Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py (#3)
Browse files- Update app.py (fe7399d2bb60ee8104736952121646297025506e)
- Update requirements.txt (f65e4a52d4d5d2173891b195bee96c3b4462dbdb)
Co-authored-by: Yoach Lacombe <ylacombe@users.noreply.huggingface.co>
- app.py +55 -84
- requirements.txt +1 -1
    	
        app.py
    CHANGED
    
    | @@ -9,22 +9,26 @@ import numpy as np | |
| 9 | 
             
            import spaces
         | 
| 10 | 
             
            import gradio as gr
         | 
| 11 | 
             
            import torch
         | 
|  | |
|  | |
| 12 |  | 
| 13 | 
             
            from parler_tts import ParlerTTSForConditionalGeneration
         | 
| 14 | 
             
            from pydub import AudioSegment
         | 
| 15 | 
             
            from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
         | 
| 16 |  | 
| 17 | 
            -
             | 
|  | |
|  | |
| 18 | 
             
            torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
         | 
| 19 |  | 
| 20 | 
             
            repo_id = "ai4bharat/indic-parler-tts-pretrained"
         | 
| 21 | 
            -
             | 
| 22 |  | 
| 23 | 
             
            model = ParlerTTSForConditionalGeneration.from_pretrained(
         | 
| 24 | 
             
                repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
         | 
| 25 | 
             
            ).to(device)
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                 | 
| 28 | 
             
            ).to(device)
         | 
| 29 |  | 
| 30 | 
             
            tokenizer = AutoTokenizer.from_pretrained(repo_id)
         | 
| @@ -89,7 +93,7 @@ examples = [ | |
| 89 | 
             
            ]
         | 
| 90 |  | 
| 91 |  | 
| 92 | 
            -
             | 
| 93 | 
             
                [
         | 
| 94 | 
             
                    "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
         | 
| 95 | 
             
                    "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
         | 
| @@ -171,44 +175,30 @@ def numpy_to_mp3(audio_array, sampling_rate): | |
| 171 | 
             
            sampling_rate = model.audio_encoder.config.sampling_rate
         | 
| 172 | 
             
            frame_rate = model.audio_encoder.config.frame_rate
         | 
| 173 |  | 
| 174 | 
            -
            # @spaces.GPU
         | 
| 175 | 
            -
            # def generate_base(text, description, play_steps_in_s=2.0):
         | 
| 176 | 
            -
            #     play_steps = int(frame_rate * play_steps_in_s)
         | 
| 177 | 
            -
            #     streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
         | 
| 178 | 
            -
             | 
| 179 | 
            -
            #     inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 180 | 
            -
            #     prompt = tokenizer(text, return_tensors="pt").to(device)
         | 
| 181 | 
            -
             | 
| 182 | 
            -
            #     generation_kwargs = dict(
         | 
| 183 | 
            -
            #         input_ids=inputs.input_ids,
         | 
| 184 | 
            -
            #         prompt_input_ids=prompt.input_ids,
         | 
| 185 | 
            -
            #         streamer=streamer,
         | 
| 186 | 
            -
            #         do_sample=True,
         | 
| 187 | 
            -
            #         temperature=1.0,
         | 
| 188 | 
            -
            #         min_new_tokens=10,
         | 
| 189 | 
            -
            #     )
         | 
| 190 | 
            -
             | 
| 191 | 
            -
            #     set_seed(SEED)
         | 
| 192 | 
            -
            #     thread = Thread(target=model.generate, kwargs=generation_kwargs)
         | 
| 193 | 
            -
            #     thread.start()
         | 
| 194 | 
            -
             | 
| 195 | 
            -
            #     for new_audio in streamer:
         | 
| 196 | 
            -
            #         print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
         | 
| 197 | 
            -
            #         yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
         | 
| 198 | 
            -
             | 
| 199 | 
             
            @spaces.GPU
         | 
| 200 | 
            -
            def generate_base(text, description, | 
| 201 | 
             
                # Initialize variables
         | 
| 202 | 
            -
                 | 
| 203 | 
            -
                chunk_size = 15  # Process 10 words at a time
         | 
| 204 |  | 
| 205 | 
             
                # Tokenize the full text and description
         | 
| 206 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 207 | 
            -
             | 
| 208 | 
            -
                 | 
| 209 | 
            -
                 | 
| 210 | 
            -
                chunks = [ | 
| 211 | 
            -
                
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 212 | 
             
                all_audio = []
         | 
| 213 |  | 
| 214 | 
             
                # Process each chunk
         | 
| @@ -223,8 +213,6 @@ def generate_base(text, description, play_steps_in_s=2.0): | |
| 223 | 
             
                        prompt_input_ids=prompt.input_ids,
         | 
| 224 | 
             
                        prompt_attention_mask=prompt.attention_mask,
         | 
| 225 | 
             
                        do_sample=True,
         | 
| 226 | 
            -
                        # temperature=1.0,
         | 
| 227 | 
            -
                        # min_new_tokens=10,
         | 
| 228 | 
             
                        return_dict_in_generate=True
         | 
| 229 | 
             
                    )
         | 
| 230 |  | 
| @@ -243,43 +231,30 @@ def generate_base(text, description, play_steps_in_s=2.0): | |
| 243 | 
             
                print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
         | 
| 244 | 
             
                yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
         | 
| 245 |  | 
| 246 | 
            -
            # @spaces.GPU
         | 
| 247 | 
            -
            # def generate_jenny(text, description, play_steps_in_s=2.0):
         | 
| 248 | 
            -
            #     play_steps = int(frame_rate * play_steps_in_s)
         | 
| 249 | 
            -
            #     streamer = ParlerTTSStreamer(jenny_model, device=device, play_steps=play_steps)
         | 
| 250 | 
            -
             | 
| 251 | 
            -
            #     inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 252 | 
            -
            #     prompt = tokenizer(text, return_tensors="pt").to(device)
         | 
| 253 | 
            -
             | 
| 254 | 
            -
            #     generation_kwargs = dict(
         | 
| 255 | 
            -
            #         input_ids=inputs.input_ids,
         | 
| 256 | 
            -
            #         prompt_input_ids=prompt.input_ids,
         | 
| 257 | 
            -
            #         streamer=streamer,
         | 
| 258 | 
            -
            #         do_sample=True,
         | 
| 259 | 
            -
            #         temperature=1.0,
         | 
| 260 | 
            -
            #         min_new_tokens=10,
         | 
| 261 | 
            -
            #     )
         | 
| 262 | 
            -
             | 
| 263 | 
            -
            #     set_seed(SEED)
         | 
| 264 | 
            -
            #     thread = Thread(target=jenny_model.generate, kwargs=generation_kwargs)
         | 
| 265 | 
            -
            #     thread.start()
         | 
| 266 | 
            -
             | 
| 267 | 
            -
            #     for new_audio in streamer:
         | 
| 268 | 
            -
            #         print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
         | 
| 269 | 
            -
            #         yield sampling_rate, new_audio
         | 
| 270 |  | 
| 271 | 
             
            @spaces.GPU
         | 
| 272 | 
            -
            def  | 
| 273 | 
             
                # Initialize variables
         | 
| 274 | 
            -
                 | 
| 275 | 
            -
                chunk_size = 15  # Process 10 words at a time
         | 
| 276 |  | 
| 277 | 
             
                # Tokenize the full text and description
         | 
| 278 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 279 | 
            -
             | 
| 280 | 
            -
                 | 
| 281 | 
            -
                 | 
| 282 | 
            -
                chunks = [ | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 283 |  | 
| 284 | 
             
                all_audio = []
         | 
| 285 |  | 
| @@ -289,14 +264,12 @@ def generate_jenny(text, description, play_steps_in_s=2.0): | |
| 289 | 
             
                    prompt = tokenizer(chunk, return_tensors="pt").to(device)
         | 
| 290 |  | 
| 291 | 
             
                    # Generate audio for the chunk
         | 
| 292 | 
            -
                    generation =  | 
| 293 | 
             
                        input_ids=inputs.input_ids,
         | 
| 294 | 
             
                        attention_mask=inputs.attention_mask,
         | 
| 295 | 
             
                        prompt_input_ids=prompt.input_ids,
         | 
| 296 | 
             
                        prompt_attention_mask=prompt.attention_mask,
         | 
| 297 | 
             
                        do_sample=True,
         | 
| 298 | 
            -
                        # temperature=1.0,
         | 
| 299 | 
            -
                        # min_new_tokens=10,
         | 
| 300 | 
             
                        return_dict_in_generate=True
         | 
| 301 | 
             
                    )
         | 
| 302 |  | 
| @@ -387,29 +360,27 @@ with gr.Blocks(css=css) as block: | |
| 387 | 
             
                with gr.Tab("Finetuned"):
         | 
| 388 | 
             
                    with gr.Row():
         | 
| 389 | 
             
                        with gr.Column():
         | 
| 390 | 
            -
                            input_text = gr.Textbox(label="Input Text", lines=2, value= | 
| 391 | 
            -
                            description = gr.Textbox(label="Description", lines=2, value= | 
| 392 | 
            -
                            play_seconds = gr.Slider(3.0, 7.0, value=jenny_examples[0][2], step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
         | 
| 393 | 
             
                            run_button = gr.Button("Generate Audio", variant="primary")
         | 
| 394 | 
             
                        with gr.Column():
         | 
| 395 | 
            -
                            audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out",  | 
| 396 |  | 
| 397 | 
            -
                    inputs = [input_text, description | 
| 398 | 
             
                    outputs = [audio_out]
         | 
| 399 | 
            -
                    gr.Examples(examples= | 
| 400 | 
            -
                    run_button.click(fn= | 
| 401 |  | 
| 402 | 
             
                with gr.Tab("Pretrained"):
         | 
| 403 | 
             
                    with gr.Row():
         | 
| 404 | 
             
                        with gr.Column():
         | 
| 405 | 
             
                            input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
         | 
| 406 | 
             
                            description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
         | 
| 407 | 
            -
                            play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
         | 
| 408 | 
             
                            run_button = gr.Button("Generate Audio", variant="primary")
         | 
| 409 | 
             
                        with gr.Column():
         | 
| 410 | 
            -
                            audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out",  | 
| 411 |  | 
| 412 | 
            -
                    inputs = [input_text, description | 
| 413 | 
             
                    outputs = [audio_out]
         | 
| 414 | 
             
                    gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
         | 
| 415 | 
             
                    run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
         | 
|  | |
| 9 | 
             
            import spaces
         | 
| 10 | 
             
            import gradio as gr
         | 
| 11 | 
             
            import torch
         | 
| 12 | 
            +
            import nltk
         | 
| 13 | 
            +
             | 
| 14 |  | 
| 15 | 
             
            from parler_tts import ParlerTTSForConditionalGeneration
         | 
| 16 | 
             
            from pydub import AudioSegment
         | 
| 17 | 
             
            from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
         | 
| 18 |  | 
| 19 | 
            +
            nltk.download('punkt_tab')
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
         | 
| 22 | 
             
            torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
         | 
| 23 |  | 
| 24 | 
             
            repo_id = "ai4bharat/indic-parler-tts-pretrained"
         | 
| 25 | 
            +
            finetuned_repo_id = "ai4bharat/indic-parler-tts"
         | 
| 26 |  | 
| 27 | 
             
            model = ParlerTTSForConditionalGeneration.from_pretrained(
         | 
| 28 | 
             
                repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
         | 
| 29 | 
             
            ).to(device)
         | 
| 30 | 
            +
            finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
         | 
| 31 | 
            +
                finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
         | 
| 32 | 
             
            ).to(device)
         | 
| 33 |  | 
| 34 | 
             
            tokenizer = AutoTokenizer.from_pretrained(repo_id)
         | 
|  | |
| 93 | 
             
            ]
         | 
| 94 |  | 
| 95 |  | 
| 96 | 
            +
            finetuned_examples = [
         | 
| 97 | 
             
                [
         | 
| 98 | 
             
                    "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
         | 
| 99 | 
             
                    "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
         | 
|  | |
| 175 | 
             
            sampling_rate = model.audio_encoder.config.sampling_rate
         | 
| 176 | 
             
            frame_rate = model.audio_encoder.config.frame_rate
         | 
| 177 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 178 | 
             
            @spaces.GPU
         | 
| 179 | 
            +
            def generate_base(text, description,):
         | 
| 180 | 
             
                # Initialize variables
         | 
| 181 | 
            +
                chunk_size = 25  # Process max 25 words or a sentence at a time
         | 
|  | |
| 182 |  | 
| 183 | 
             
                # Tokenize the full text and description
         | 
| 184 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
         | 
| 187 | 
            +
                curr_sentence = ""
         | 
| 188 | 
            +
                chunks = []
         | 
| 189 | 
            +
                for sentence in sentences_text:
         | 
| 190 | 
            +
                    candidate = " ".join([curr_sentence, sentence])
         | 
| 191 | 
            +
                    if len(candidate.split()) >= chunk_size:
         | 
| 192 | 
            +
                        chunks.append(curr_sentence)
         | 
| 193 | 
            +
                        curr_sentence = sentence
         | 
| 194 | 
            +
                    else:
         | 
| 195 | 
            +
                        curr_sentence = candidate
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                if curr_sentence != "":
         | 
| 198 | 
            +
                    chunks.append(curr_sentence)
         | 
| 199 | 
            +
                    
         | 
| 200 | 
            +
                print(chunks)
         | 
| 201 | 
            +
             | 
| 202 | 
             
                all_audio = []
         | 
| 203 |  | 
| 204 | 
             
                # Process each chunk
         | 
|  | |
| 213 | 
             
                        prompt_input_ids=prompt.input_ids,
         | 
| 214 | 
             
                        prompt_attention_mask=prompt.attention_mask,
         | 
| 215 | 
             
                        do_sample=True,
         | 
|  | |
|  | |
| 216 | 
             
                        return_dict_in_generate=True
         | 
| 217 | 
             
                    )
         | 
| 218 |  | 
|  | |
| 231 | 
             
                print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
         | 
| 232 | 
             
                yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
         | 
| 233 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 234 |  | 
| 235 | 
             
            @spaces.GPU
         | 
| 236 | 
            +
            def generate_finetuned(text, description):
         | 
| 237 | 
             
                # Initialize variables
         | 
| 238 | 
            +
                chunk_size = 25  # Process max 25 words or a sentence at a time
         | 
|  | |
| 239 |  | 
| 240 | 
             
                # Tokenize the full text and description
         | 
| 241 | 
             
                inputs = description_tokenizer(description, return_tensors="pt").to(device)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
         | 
| 244 | 
            +
                curr_sentence = ""
         | 
| 245 | 
            +
                chunks = []
         | 
| 246 | 
            +
                for sentence in sentences_text:
         | 
| 247 | 
            +
                    candidate = " ".join([curr_sentence, sentence])
         | 
| 248 | 
            +
                    if len(candidate.split()) >= chunk_size:
         | 
| 249 | 
            +
                        chunks.append(curr_sentence)
         | 
| 250 | 
            +
                        curr_sentence = sentence
         | 
| 251 | 
            +
                    else:
         | 
| 252 | 
            +
                        curr_sentence = candidate
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                if curr_sentence != "":
         | 
| 255 | 
            +
                    chunks.append(curr_sentence)
         | 
| 256 | 
            +
                    
         | 
| 257 | 
            +
                print(chunks)
         | 
| 258 |  | 
| 259 | 
             
                all_audio = []
         | 
| 260 |  | 
|  | |
| 264 | 
             
                    prompt = tokenizer(chunk, return_tensors="pt").to(device)
         | 
| 265 |  | 
| 266 | 
             
                    # Generate audio for the chunk
         | 
| 267 | 
            +
                    generation = finetuned_model.generate(
         | 
| 268 | 
             
                        input_ids=inputs.input_ids,
         | 
| 269 | 
             
                        attention_mask=inputs.attention_mask,
         | 
| 270 | 
             
                        prompt_input_ids=prompt.input_ids,
         | 
| 271 | 
             
                        prompt_attention_mask=prompt.attention_mask,
         | 
| 272 | 
             
                        do_sample=True,
         | 
|  | |
|  | |
| 273 | 
             
                        return_dict_in_generate=True
         | 
| 274 | 
             
                    )
         | 
| 275 |  | 
|  | |
| 360 | 
             
                with gr.Tab("Finetuned"):
         | 
| 361 | 
             
                    with gr.Row():
         | 
| 362 | 
             
                        with gr.Column():
         | 
| 363 | 
            +
                            input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
         | 
| 364 | 
            +
                            description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
         | 
|  | |
| 365 | 
             
                            run_button = gr.Button("Generate Audio", variant="primary")
         | 
| 366 | 
             
                        with gr.Column():
         | 
| 367 | 
            +
                            audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
         | 
| 368 |  | 
| 369 | 
            +
                    inputs = [input_text, description]
         | 
| 370 | 
             
                    outputs = [audio_out]
         | 
| 371 | 
            +
                    gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
         | 
| 372 | 
            +
                    run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)
         | 
| 373 |  | 
| 374 | 
             
                with gr.Tab("Pretrained"):
         | 
| 375 | 
             
                    with gr.Row():
         | 
| 376 | 
             
                        with gr.Column():
         | 
| 377 | 
             
                            input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
         | 
| 378 | 
             
                            description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
         | 
|  | |
| 379 | 
             
                            run_button = gr.Button("Generate Audio", variant="primary")
         | 
| 380 | 
             
                        with gr.Column():
         | 
| 381 | 
            +
                            audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
         | 
| 382 |  | 
| 383 | 
            +
                    inputs = [input_text, description]
         | 
| 384 | 
             
                    outputs = [audio_out]
         | 
| 385 | 
             
                    gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
         | 
| 386 | 
             
                    run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,4 +1,4 @@ | |
| 1 | 
             
            torch
         | 
| 2 | 
             
            spaces
         | 
| 3 | 
             
            git+https://github.com/huggingface/parler-tts.git
         | 
| 4 | 
            -
             | 
|  | |
| 1 | 
             
            torch
         | 
| 2 | 
             
            spaces
         | 
| 3 | 
             
            git+https://github.com/huggingface/parler-tts.git
         | 
| 4 | 
            +
            nltk
         | 

