Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| import requests | |
| from langchain_community.document_loaders import TextLoader, DirectoryLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_openai import ChatOpenAI | |
| from langchain.prompts import PromptTemplate | |
| import numpy as np | |
| import faiss | |
| from collections import deque | |
| from langchain_core.embeddings import Embeddings | |
| import threading | |
| import queue | |
| from langchain_core.messages import HumanMessage, AIMessage | |
| from sentence_transformers import SentenceTransformer | |
| import pickle | |
| import torch | |
| import time | |
| from tqdm import tqdm | |
| import logging | |
| # 设置日志 | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # 获取环境变量 | |
| os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "") | |
| if not os.environ["OPENROUTER_API_KEY"]: | |
| raise ValueError("OPENROUTER_API_KEY 未设置") | |
| SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY") | |
| if not SILICONFLOW_API_KEY: | |
| raise ValueError("SILICONFLOW_API_KEY 未设置") | |
| # SiliconFlow API 配置 | |
| SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" | |
| # 自定义嵌入类,优化查询缓存 | |
| class SentenceTransformerEmbeddings(Embeddings): | |
| def __init__(self, model_name="BAAI/bge-m3"): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.model = SentenceTransformer(model_name, device=device) | |
| self.batch_size = 32 # 减小批次大小以适应低内存 | |
| self.query_cache = {} | |
| self.cache_lock = threading.Lock() | |
| def embed_documents(self, texts): | |
| embeddings_list = [] | |
| batch_size = 1000 # 减小批次以降低内存压力 | |
| total_chunks = len(texts) | |
| logger.info(f"生成嵌入,文档数: {total_chunks}") | |
| with torch.no_grad(): | |
| for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"): | |
| batch_texts = [text.page_content for text in texts[i:i + batch_size]] | |
| batch_emb = self.model.encode( | |
| batch_texts, | |
| normalize_embeddings=True, | |
| batch_size=self.batch_size | |
| ) | |
| embeddings_list.append(batch_emb) | |
| embeddings_array = np.vstack(embeddings_list) | |
| np.save("embeddings.npy", embeddings_array) | |
| return embeddings_array | |
| def embed_query(self, text): | |
| with self.cache_lock: | |
| if text in self.query_cache: | |
| return self.query_cache[text] | |
| with torch.no_grad(): | |
| emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0] | |
| with self.cache_lock: | |
| self.query_cache[text] = emb | |
| if len(self.query_cache) > 1000: # 限制缓存大小 | |
| self.query_cache.pop(next(iter(self.query_cache))) | |
| return emb | |
| # 重排序函数 | |
| def rerank_documents(query, documents, top_n=15): | |
| try: | |
| doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]] | |
| headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"} | |
| payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n} | |
| response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload) | |
| response.raise_for_status() | |
| result = response.json() | |
| reranked_docs = [] | |
| for res in result["results"]: | |
| index = res["index"] | |
| score = res["relevance_score"] | |
| if index < len(documents): | |
| text, book = doc_texts[index] | |
| reranked_docs.append((documents[index], score)) | |
| return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n] | |
| except Exception as e: | |
| logger.error(f"重排序失败: {str(e)}") | |
| raise | |
| # 构建 HNSW 索引 | |
| def build_hnsw_index(knowledge_base_path, index_path): | |
| loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8")) | |
| documents = loader.load() | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| texts = text_splitter.split_documents(documents) | |
| for i, doc in enumerate(texts): | |
| doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "") | |
| embeddings_array = embeddings.embed_documents(texts) | |
| dimension = embeddings_array.shape[1] | |
| index = faiss.IndexHNSWFlat(dimension, 16) | |
| index.hnsw.efConstruction = 100 | |
| index.add(embeddings_array) | |
| vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings) | |
| vector_store.index = index | |
| vector_store.save_local(index_path) | |
| with open("chunks.pkl", "wb") as f: | |
| pickle.dump(texts, f) | |
| return vector_store, texts | |
| # 初始化嵌入模型和索引 | |
| embeddings = SentenceTransformerEmbeddings() | |
| index_path = "faiss_index_hnsw_new" | |
| knowledge_base_path = "knowledge_base" | |
| if not os.path.exists(index_path): | |
| vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path) | |
| else: | |
| vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) | |
| vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度 | |
| with open("chunks.pkl", "rb") as f: | |
| all_documents = pickle.load(f) | |
| # 初始化 LLM | |
| llm = ChatOpenAI( | |
| model="deepseek/deepseek-r1:free", | |
| api_key=os.environ["OPENROUTER_API_KEY"], | |
| base_url="https://openrouter.ai/api/v1", | |
| timeout=100, | |
| temperature=0.3, | |
| max_tokens=130000, | |
| streaming=True | |
| ) | |
| # 提示词模板 | |
| prompt_template = PromptTemplate( | |
| input_variables=["context", "question", "chat_history"], | |
| template=""" | |
| 你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。 | |
| 在回答时,请注意以下几点: | |
| - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。 | |
| - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。 | |
| - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为: | |
| - 引用文献: | |
| 1. [文本 1] 摘要... 出自:书名,第X页/章节。 | |
| 2. [文本 2] 摘要... 出自:书名,第X页/章节。 | |
| (依此类推,至少10篇) | |
| - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 | |
| - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 | |
| - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 | |
| - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。 | |
| - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。 | |
| - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。 | |
| - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 | |
| - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 | |
| - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 | |
| - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 | |
| """ | |
| ) | |
| # 对话历史管理 | |
| class ConversationHistory: | |
| def __init__(self, max_length=5): # 减少历史轮数 | |
| self.history = deque(maxlen=max_length) | |
| def add_turn(self, question, answer): | |
| self.history.append((question, answer)) | |
| def get_history(self): | |
| return [(q, a) for q, a in self.history] | |
| # 用户会话状态 | |
| class UserSession: | |
| def __init__(self): | |
| self.conversation = ConversationHistory() | |
| self.output_queue = queue.Queue() | |
| self.stop_flag = threading.Event() | |
| # 生成回答 | |
| def generate_answer_thread(question, session): | |
| stop_flag = session.stop_flag | |
| output_queue = session.output_queue | |
| conversation = session.conversation | |
| stop_flag.clear() | |
| try: | |
| # 打印用户问题到控制台 | |
| logger.info(f"用户问题: {question}") | |
| history_list = conversation.get_history() | |
| history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-3:]]) # 只用最后3轮 | |
| query_with_context = f"{history_text}\n问题: {question}" if history_text else question | |
| # 异步生成查询嵌入 | |
| embed_queue = queue.Queue() | |
| def embed_task(): | |
| start = time.time() | |
| emb = embeddings.embed_query(query_with_context) | |
| embed_queue.put((emb, time.time() - start)) | |
| embed_thread = threading.Thread(target=embed_task) | |
| embed_thread.start() | |
| embed_thread.join() | |
| query_embedding, embed_time = embed_queue.get() | |
| if stop_flag.is_set(): | |
| output_queue.put("生成已停止") | |
| return | |
| # 初始检索 | |
| start = time.time() | |
| docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50) | |
| search_time = time.time() - start | |
| if stop_flag.is_set(): | |
| output_queue.put("生成已停止") | |
| return | |
| # 重排序 | |
| initial_docs = [doc for doc, _ in docs_with_scores] | |
| start = time.time() | |
| reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs) | |
| rerank_time = time.time() - start | |
| final_docs = [doc for doc, _ in reranked_docs_with_scores][:10] | |
| # 打印重排序结果到控制台 | |
| logger.info("重排序结果(最终保留的片段及其得分):") | |
| for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1): | |
| logger.info(f"片段 {i}:") | |
| logger.info(f" 内容: {doc.page_content[:100]}...") | |
| logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}") | |
| logger.info(f" 得分: {score:.4f}") | |
| context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)]) | |
| prompt = prompt_template.format(context=context, question=question, chat_history=history_text) | |
| # 将时间信息加入回答开头 | |
| timing_info = ( | |
| f"处理时间统计:\n" | |
| f"- 嵌入时间: {embed_time:.2f} 秒\n" | |
| f"- 检索时间: {search_time:.2f} 秒\n" | |
| f"- 重排序时间: {rerank_time:.2f} 秒\n\n" | |
| ) | |
| answer = timing_info | |
| output_queue.put(answer) # 先显示时间信息 | |
| # LLM 生成回答 | |
| start = time.time() | |
| for chunk in llm.stream([HumanMessage(content=prompt)]): | |
| if stop_flag.is_set(): | |
| output_queue.put(answer + "\n(生成已停止)") | |
| return | |
| answer += chunk.content | |
| output_queue.put(answer) | |
| llm_time = time.time() - start | |
| answer += f"\n\n生成耗时: {llm_time:.2f} 秒" | |
| output_queue.put(answer) | |
| conversation.add_turn(question, answer) | |
| output_queue.put(answer) | |
| except Exception as e: | |
| output_queue.put(f"Error: {str(e)}") | |
| # Gradio 接口 | |
| def answer_question(question, session_state): | |
| if session_state is None: | |
| session_state = UserSession() | |
| thread = threading.Thread(target=generate_answer_thread, args=(question, session_state)) | |
| thread.start() | |
| while thread.is_alive() or not session_state.output_queue.empty(): | |
| try: | |
| output = session_state.output_queue.get(timeout=0.1) | |
| yield output, session_state | |
| except queue.Empty: | |
| continue | |
| def stop_generation(session_state): | |
| if session_state: | |
| session_state.stop_flag.set() | |
| return "生成已停止" | |
| def clear_conversation(): | |
| return "对话已清空", UserSession() | |
| # 自动提问功能:每天触发一次“介绍一下李敖” | |
| def auto_ask_question(): | |
| auto_session = UserSession() | |
| last_run_time = 0 | |
| interval = 24 * 60 * 60 # 24小时(单位:秒) | |
| while True: | |
| current_time = time.time() | |
| if current_time - last_run_time >= interval: | |
| logger.info("自动触发问题:介绍一下李敖") | |
| thread = threading.Thread(target=generate_answer_thread, args=("介绍一下李敖", auto_session)) | |
| thread.start() | |
| thread.join() # 等待回答生成完成 | |
| last_run_time = current_time | |
| time.sleep(60) # 每分钟检查一次,避免占用过多资源 | |
| # Gradio 界面 | |
| with gr.Blocks(title="AI李敖助手") as interface: | |
| gr.Markdown("## AI李敖助手") | |
| gr.Markdown("### 作者:爱华山樱") | |
| gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近5轮对话,输入问题以获取李敖风格的回答。") | |
| gr.Markdown("提问之后红框存在期间表示正在生成回答,如果红框消失之后答案没出来,说明生成有问题(偶尔会这样),重来一次即可。") | |
| session_state = gr.State(value=None) | |
| question_input = gr.Textbox(label="问题") | |
| submit_button = gr.Button("提交") | |
| clear_button = gr.Button("新建对话") | |
| stop_button = gr.Button("停止生成") | |
| output_text = gr.Textbox(label="回答", interactive=False) | |
| submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state]) | |
| clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state]) | |
| stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text) | |
| if __name__ == "__main__": | |
| # 启动自动提问线程 | |
| auto_thread = threading.Thread(target=auto_ask_question, daemon=True) | |
| auto_thread.start() | |
| # 启动 Gradio 界面 | |
| interface.launch(share=True) |