Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import re
|
| 5 |
+
import time
|
| 6 |
+
import requests
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import itertools
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
from matplotlib.colors import rgb2hex
|
| 12 |
+
import matplotlib
|
| 13 |
+
from matplotlib.colors import ListedColormap, rgb2hex
|
| 14 |
+
import ipywidgets as widgets
|
| 15 |
+
from IPython.display import display, HTML
|
| 16 |
+
import re
|
| 17 |
+
import pandas as pd
|
| 18 |
+
from pprint import pprint
|
| 19 |
+
from tenacity import retry
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
import tiktoken
|
| 22 |
+
import scipy.stats
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import GPT2LMHeadModel
|
| 25 |
+
import tiktoken
|
| 26 |
+
import seaborn as sns
|
| 27 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 28 |
+
# from colorama import Fore, Style
|
| 29 |
+
import openai # for OpenAI API calls
|
| 30 |
+
|
| 31 |
+
######################################
|
| 32 |
+
import streamlit as st
|
| 33 |
+
def colorize_tokens(token_data, sentence):
|
| 34 |
+
colored_sentence = ""
|
| 35 |
+
start = 0
|
| 36 |
+
|
| 37 |
+
for token in token_data:
|
| 38 |
+
entity_group = token["entity_group"]
|
| 39 |
+
word = token["word"]
|
| 40 |
+
tag = f"[{entity_group}]"
|
| 41 |
+
tag_color = tag_colors.get(entity_group, "white") # Default to white if color not found
|
| 42 |
+
colored_chunk = f'<span style="color:black;background-color:{tag_color}">{word} {tag}</span>'
|
| 43 |
+
colored_sentence += sentence[start:token["start"]] + colored_chunk
|
| 44 |
+
start = token["end"]
|
| 45 |
+
|
| 46 |
+
# Add the remaining part of the sentence
|
| 47 |
+
colored_sentence += sentence[start:]
|
| 48 |
+
|
| 49 |
+
return colored_sentence
|
| 50 |
+
|
| 51 |
+
# Define colors for the tags
|
| 52 |
+
tag_colors = {
|
| 53 |
+
"ADJP": "#0000FF", # Blue
|
| 54 |
+
"ADVP": "#008000", # Green
|
| 55 |
+
"CONJP": "#FF0000", # Red
|
| 56 |
+
"INTJ": "#00FFFF", # Cyan
|
| 57 |
+
"LST": "#FF00FF", # Magenta
|
| 58 |
+
"NP": "#FFFF00", # Yellow
|
| 59 |
+
"PP": "#800080", # Purple
|
| 60 |
+
"PRT": "#00008B", # Dark Blue
|
| 61 |
+
"SBAR": "#006400", # Dark Green
|
| 62 |
+
"VP": "#008B8B", # Dark Cyan
|
| 63 |
+
}
|
| 64 |
+
##################
|
| 65 |
+
|
| 66 |
+
###################
|
| 67 |
+
def generate_tagged_sentence(sentence, entity_tags):
|
| 68 |
+
# Create a list to hold the tagged tokens
|
| 69 |
+
tagged_tokens = []
|
| 70 |
+
|
| 71 |
+
# Process the entity tags to annotate the sentence
|
| 72 |
+
for tag in entity_tags:
|
| 73 |
+
start = tag['start']
|
| 74 |
+
end = tag['end']
|
| 75 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
| 76 |
+
tag_name = f"[{tag['entity_group']}]"
|
| 77 |
+
|
| 78 |
+
tagged_tokens.append(f"{token} {tag_name}")
|
| 79 |
+
|
| 80 |
+
# Return the tagged sentence
|
| 81 |
+
return " ".join(tagged_tokens)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def replace_pp_with_pause(sentence, entity_tags):
|
| 85 |
+
# Create a list to hold the tagged tokens
|
| 86 |
+
tagged_tokens = []
|
| 87 |
+
|
| 88 |
+
# Process the entity tags to replace [PP] with [PAUSE]
|
| 89 |
+
for tag in entity_tags:
|
| 90 |
+
start = tag['start']
|
| 91 |
+
end = tag['end']
|
| 92 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
| 93 |
+
tag_name = f"[{tag['entity_group']}]"
|
| 94 |
+
|
| 95 |
+
if tag['entity_group'] == 'PP':
|
| 96 |
+
# Replace [PP] with [PAUSE]
|
| 97 |
+
tag_name = '[PAUSE]'
|
| 98 |
+
else:
|
| 99 |
+
tag_name = ''
|
| 100 |
+
|
| 101 |
+
tagged_tokens.append(f"{token}{tag_name}")
|
| 102 |
+
|
| 103 |
+
# Return the sentence with [PAUSE] replacement
|
| 104 |
+
return " ".join(tagged_tokens)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_split_sentences(sentence, entity_tags):
|
| 108 |
+
split_sentences = []
|
| 109 |
+
|
| 110 |
+
# Initialize a variable to hold the current sentence
|
| 111 |
+
current_sentence = []
|
| 112 |
+
|
| 113 |
+
# Process the entity tags to split the sentence
|
| 114 |
+
for tag in entity_tags:
|
| 115 |
+
if tag['entity_group'] == 'PP':
|
| 116 |
+
start = tag['start']
|
| 117 |
+
end = tag['end']
|
| 118 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
| 119 |
+
current_sentence.append(token)
|
| 120 |
+
split_sentences.append(" ".join(current_sentence))
|
| 121 |
+
current_sentence = [] # Reset the current sentence
|
| 122 |
+
else:
|
| 123 |
+
start = tag['start']
|
| 124 |
+
end = tag['end']
|
| 125 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
| 126 |
+
current_sentence.append(token)
|
| 127 |
+
|
| 128 |
+
# If the sentence ends without a [PAUSE] token, add the final sentence
|
| 129 |
+
if current_sentence:
|
| 130 |
+
split_sentences.append(" ".join(current_sentence))
|
| 131 |
+
|
| 132 |
+
return split_sentences
|
| 133 |
+
# def get_split_sentences(sentence, entity_tags):
|
| 134 |
+
# split_sentences = []
|
| 135 |
+
|
| 136 |
+
# # Initialize a variable to hold the current sentence
|
| 137 |
+
# current_sentence = []
|
| 138 |
+
|
| 139 |
+
# # Process the entity tags to split the sentence
|
| 140 |
+
# for tag in entity_tags:
|
| 141 |
+
# if tag['entity_group'] == 'PP':
|
| 142 |
+
# if current_sentence:
|
| 143 |
+
# print(current_sentence)
|
| 144 |
+
# split_sentences.append(" ".join(current_sentence))
|
| 145 |
+
# current_sentence = [] # Reset the current sentence
|
| 146 |
+
# else:
|
| 147 |
+
# start = tag['start']
|
| 148 |
+
# end = tag['end']
|
| 149 |
+
# token = sentence[start - 1:end] # Adjust for 0-based indexing
|
| 150 |
+
# current_sentence.append(token)
|
| 151 |
+
|
| 152 |
+
# # If the sentence ends without a [PAUSE] token, add the final sentence
|
| 153 |
+
# if current_sentence:
|
| 154 |
+
# split_sentences.append(" ".join(current_sentence))
|
| 155 |
+
|
| 156 |
+
# return split_sentences
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
##################
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
######################################
|
| 165 |
+
|
| 166 |
+
st.set_page_config(page_title="Hallucination", layout="wide")
|
| 167 |
+
st.title(':blue[Sorry come again! This time slowly, please]')
|
| 168 |
+
st.header("Rephrasing LLM Prompts for Better Comprehension Reduces :blue[Hallucination]")
|
| 169 |
+
############################
|
| 170 |
+
video_file1 = open('machine.mp4', 'rb')
|
| 171 |
+
video_file2 = open('Pause 3 Out1.mp4', 'rb')
|
| 172 |
+
video_bytes1 = video_file1.read()
|
| 173 |
+
video_bytes2 = video_file2.read()
|
| 174 |
+
col1a, col1b = st.columns(2)
|
| 175 |
+
with col1a:
|
| 176 |
+
st.caption("Original")
|
| 177 |
+
st.video(video_bytes1)
|
| 178 |
+
with col1b:
|
| 179 |
+
st.caption("Paraphrased and added [PAUSE]")
|
| 180 |
+
st.video(video_bytes2)
|
| 181 |
+
#############################
|
| 182 |
+
HF_SPACES_API_KEY = st.secrets["HF_token"]
|
| 183 |
+
|
| 184 |
+
#API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b"
|
| 185 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
|
| 186 |
+
headers = {"Authorization": HF_SPACES_API_KEY}
|
| 187 |
+
|
| 188 |
+
def query(payload):
|
| 189 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 190 |
+
return response.json()
|
| 191 |
+
|
| 192 |
+
API_URL_chunk = "https://api-inference.huggingface.co/models/flair/chunk-english"
|
| 193 |
+
|
| 194 |
+
def query_chunk(payload):
|
| 195 |
+
response = requests.post(API_URL_chunk, headers=headers, json=payload)
|
| 196 |
+
return response.json()
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
from tenacity import (
|
| 201 |
+
retry,
|
| 202 |
+
stop_after_attempt,
|
| 203 |
+
wait_random_exponential,
|
| 204 |
+
) # for exponential backoff
|
| 205 |
+
# openai.api_key = f"{st.secrets['OpenAI_API']}"
|
| 206 |
+
# model_engine = "gpt-4"
|
| 207 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
| 208 |
+
# def get_answers(prompt):
|
| 209 |
+
# completion = openai.ChatCompletion.create(
|
| 210 |
+
# model = 'gpt-3.5-turbo',
|
| 211 |
+
# messages = [
|
| 212 |
+
# {'role': 'user', 'content': prompt}
|
| 213 |
+
# ],
|
| 214 |
+
# temperature = 0,max_tokens= 200,
|
| 215 |
+
# )
|
| 216 |
+
# return completion['choices'][0]['message']['content']
|
| 217 |
+
prompt = '''Generate a story from the given text.
|
| 218 |
+
Text : '''
|
| 219 |
+
# paraphrase_prompt = '''Rephrase the given text: '''
|
| 220 |
+
|
| 221 |
+
# _gpt3tokenizer = tiktoken.get_encoding("cl100k_base")
|
| 222 |
+
|
| 223 |
+
##########################
|
| 224 |
+
# def render_heatmap(original_text, importance_scores_df):
|
| 225 |
+
# # Extract the importance scores
|
| 226 |
+
# importance_values = importance_scores_df['importance_value'].values
|
| 227 |
+
|
| 228 |
+
# # Check for division by zero during normalization
|
| 229 |
+
# min_val = np.min(importance_values)
|
| 230 |
+
# max_val = np.max(importance_values)
|
| 231 |
+
|
| 232 |
+
# if max_val - min_val != 0:
|
| 233 |
+
# normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
|
| 234 |
+
# else:
|
| 235 |
+
# normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
|
| 236 |
+
|
| 237 |
+
# # Generate a colormap for the heatmap
|
| 238 |
+
# cmap = matplotlib.colormaps['inferno']
|
| 239 |
+
|
| 240 |
+
# # Function to determine text color based on background color
|
| 241 |
+
# def get_text_color(bg_color):
|
| 242 |
+
# brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
|
| 243 |
+
# if brightness < 0.5:
|
| 244 |
+
# return 'white'
|
| 245 |
+
# else:
|
| 246 |
+
# return 'black'
|
| 247 |
+
|
| 248 |
+
# # Initialize pointers for the original text and token importance
|
| 249 |
+
# original_pointer = 0
|
| 250 |
+
# token_pointer = 0
|
| 251 |
+
|
| 252 |
+
# # Create an HTML representation
|
| 253 |
+
# html = ""
|
| 254 |
+
# while original_pointer < len(original_text):
|
| 255 |
+
# token = importance_scores_df.loc[token_pointer, 'token']
|
| 256 |
+
# if original_pointer == original_text.find(token, original_pointer):
|
| 257 |
+
# importance = normalized_importance_values[token_pointer]
|
| 258 |
+
# rgba = cmap(importance)
|
| 259 |
+
# bg_color = rgba[:3]
|
| 260 |
+
# text_color = get_text_color(bg_color)
|
| 261 |
+
# html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
|
| 262 |
+
# original_pointer += len(token)
|
| 263 |
+
# token_pointer += 1
|
| 264 |
+
# else:
|
| 265 |
+
# html += original_text[original_pointer]
|
| 266 |
+
# original_pointer += 1
|
| 267 |
+
|
| 268 |
+
# #display(HTML(html))
|
| 269 |
+
# st.markdown(html, unsafe_allow_html=True)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def render_heatmap(original_text, importance_scores_df):
|
| 273 |
+
# Extract the importance scores
|
| 274 |
+
importance_values = importance_scores_df['importance_value'].values
|
| 275 |
+
|
| 276 |
+
# Check for division by zero during normalization
|
| 277 |
+
min_val = np.min(importance_values)
|
| 278 |
+
max_val = np.max(importance_values)
|
| 279 |
+
|
| 280 |
+
if max_val - min_val != 0:
|
| 281 |
+
normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
|
| 282 |
+
else:
|
| 283 |
+
normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
|
| 284 |
+
|
| 285 |
+
# Generate a colormap for the heatmap (use "Blues")
|
| 286 |
+
cmap = matplotlib.cm.get_cmap('Blues')
|
| 287 |
+
|
| 288 |
+
# Function to determine text color based on background color
|
| 289 |
+
def get_text_color(bg_color):
|
| 290 |
+
brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
|
| 291 |
+
if brightness < 0.5:
|
| 292 |
+
return 'white'
|
| 293 |
+
else:
|
| 294 |
+
return 'black'
|
| 295 |
+
|
| 296 |
+
# Initialize pointers for the original text and token importance
|
| 297 |
+
original_pointer = 0
|
| 298 |
+
token_pointer = 0
|
| 299 |
+
|
| 300 |
+
# Create an HTML representation
|
| 301 |
+
html = ""
|
| 302 |
+
while original_pointer < len(original_text):
|
| 303 |
+
token = importance_scores_df.loc[token_pointer, 'token']
|
| 304 |
+
if original_pointer == original_text.find(token, original_pointer):
|
| 305 |
+
importance = normalized_importance_values[token_pointer]
|
| 306 |
+
rgba = cmap(importance)
|
| 307 |
+
bg_color = rgba[:3]
|
| 308 |
+
text_color = get_text_color(bg_color)
|
| 309 |
+
html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
|
| 310 |
+
original_pointer += len(token)
|
| 311 |
+
token_pointer += 1
|
| 312 |
+
else:
|
| 313 |
+
html += original_text[original_pointer]
|
| 314 |
+
original_pointer += 1
|
| 315 |
+
|
| 316 |
+
st.markdown(html, unsafe_allow_html=True)
|
| 317 |
+
|
| 318 |
+
##########################
|
| 319 |
+
# Create selectbox
|
| 320 |
+
|
| 321 |
+
prompt_list=["Which individuals possessed the ships that were part of the Boston Tea Party?",
|
| 322 |
+
"Freddie Frith", "Robert used PDF for his math homework."
|
| 323 |
+
]
|
| 324 |
+
|
| 325 |
+
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(3)] + ["Another Prompt..."]
|
| 326 |
+
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
|
| 327 |
+
check=[]
|
| 328 |
+
# if selection == "Another Prompt...":
|
| 329 |
+
# otherOption = st.text_input("Enter your custom prompt...")
|
| 330 |
+
# if otherOption:
|
| 331 |
+
# st.caption(f""":white_check_mark: Your input prompt is : {otherOption}""")
|
| 332 |
+
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
| 333 |
+
|
| 334 |
+
# check=otherOption
|
| 335 |
+
# st.caption(f"""{check}""")
|
| 336 |
+
|
| 337 |
+
# else:
|
| 338 |
+
# result = re.split(r'#\d+:', selection, 1)
|
| 339 |
+
# if result:
|
| 340 |
+
# st.caption(f""":white_check_mark: Your input prompt is : {result[1]}""")
|
| 341 |
+
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
| 342 |
+
# check=result[1]
|
| 343 |
+
if selection == "Another Prompt...":
|
| 344 |
+
check = st.text_input("Enter your custom prompt...")
|
| 345 |
+
check = " " + check
|
| 346 |
+
if check:
|
| 347 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
| 348 |
+
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
| 349 |
+
|
| 350 |
+
# check=otherOption
|
| 351 |
+
# st.caption(f"""{check}""")
|
| 352 |
+
|
| 353 |
+
else:
|
| 354 |
+
check = re.split(r'#\d+:', selection, 1)[1]
|
| 355 |
+
if check:
|
| 356 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
| 357 |
+
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
| 358 |
+
# check=result[1]
|
| 359 |
+
|
| 360 |
+
# @st.cache_data
|
| 361 |
+
def load_chunk_model(check):
|
| 362 |
+
iden=['error']
|
| 363 |
+
while 'error' in iden:
|
| 364 |
+
time.sleep(1)
|
| 365 |
+
try:
|
| 366 |
+
output = query_chunk({"inputs": f"""{check}""",})
|
| 367 |
+
iden = output # Update 'check' with the new result
|
| 368 |
+
except Exception as e:
|
| 369 |
+
print(f"An exception occurred: {e}")
|
| 370 |
+
|
| 371 |
+
return output
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
##################################
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# st.write(entity_tags)
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
##################################
|
| 382 |
+
# colored_output, _ = colorize_tokens(load_chunk_model(check),check)
|
| 383 |
+
# st.caption('The below :blue[NER] tags are found for orginal prompt:')
|
| 384 |
+
# st.markdown(colored_output, unsafe_allow_html=True)
|
| 385 |
+
|
| 386 |
+
# @st.cache_resource
|
| 387 |
+
def load_text_gen_model(check):
|
| 388 |
+
iden=['error']
|
| 389 |
+
while 'error' in iden:
|
| 390 |
+
time.sleep(1)
|
| 391 |
+
try:
|
| 392 |
+
output = query({
|
| 393 |
+
"inputs": f"""{check}""",
|
| 394 |
+
"parameters": {
|
| 395 |
+
"min_new_tokens": 30,
|
| 396 |
+
"max_new_tokens": 100,
|
| 397 |
+
"do_sample":True,
|
| 398 |
+
#"remove_invalid_values" : True
|
| 399 |
+
#"temperature" :0.6
|
| 400 |
+
# "top_k":1
|
| 401 |
+
# "num_beams":2,
|
| 402 |
+
# "no_repeat_ngram_size":2,
|
| 403 |
+
# "early_stopping":True
|
| 404 |
+
}
|
| 405 |
+
})
|
| 406 |
+
iden = output # Update 'check' with the new result
|
| 407 |
+
except Exception as e:
|
| 408 |
+
print(f"An exception occurred: {e}")
|
| 409 |
+
|
| 410 |
+
return output[0]['generated_text']
|
| 411 |
+
# @st.cache_data
|
| 412 |
+
# def load_text_gen_model(check):
|
| 413 |
+
# return get_answers(prompt + check)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def decoded_tokens(string, tokenizer):
|
| 418 |
+
return [tokenizer.decode([x]) for x in tokenizer.encode(string)]
|
| 419 |
+
|
| 420 |
+
# def analyze_heatmap(df):
|
| 421 |
+
# sns.set_palette(sns.color_palette("viridis"))
|
| 422 |
+
|
| 423 |
+
# # Create a copy of the DataFrame to prevent modification of the original
|
| 424 |
+
# df_copy = df.copy()
|
| 425 |
+
|
| 426 |
+
# # Ensure DataFrame has the required columns
|
| 427 |
+
# if 'token' not in df_copy.columns or 'importance_value' not in df_copy.columns:
|
| 428 |
+
# raise ValueError("The DataFrame must contain 'token' and 'importance_value' columns.")
|
| 429 |
+
|
| 430 |
+
# # Add 'Position' column to the DataFrame copy
|
| 431 |
+
# df_copy['Position'] = range(len(df_copy))
|
| 432 |
+
|
| 433 |
+
# # Plot a bar chart for importance score per token
|
| 434 |
+
# plt.figure(figsize=(len(df_copy) * 0.3, 4))
|
| 435 |
+
# sns.barplot(x='token', y='importance_value', data=df_copy)
|
| 436 |
+
# plt.xticks(rotation=45, ha='right')
|
| 437 |
+
# plt.title('Importance Score per Token')
|
| 438 |
+
# return plt
|
| 439 |
+
# #plt.show()
|
| 440 |
+
|
| 441 |
+
# ###########################
|
| 442 |
+
|
| 443 |
+
# def analyze_heatmap(df_input):
|
| 444 |
+
# df = df_input.copy()
|
| 445 |
+
# df["Position"] = range(len(df))
|
| 446 |
+
|
| 447 |
+
# # Get the viridis colormap
|
| 448 |
+
# viridis = matplotlib.cm.get_cmap("viridis")
|
| 449 |
+
# # Create a Matplotlib figure and axis
|
| 450 |
+
# fig, ax = plt.subplots(figsize=(10, 6))
|
| 451 |
+
|
| 452 |
+
# # Normalize the importance values
|
| 453 |
+
# min_val = df["importance_value"].min()
|
| 454 |
+
# max_val = df["importance_value"].max()
|
| 455 |
+
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
| 456 |
+
|
| 457 |
+
# # Create the bars, colored based on normalized importance_value
|
| 458 |
+
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
| 459 |
+
# color = viridis(norm_value)
|
| 460 |
+
# ax.bar(
|
| 461 |
+
# x=[i], # Use index for x-axis
|
| 462 |
+
# height=[df["importance_value"].iloc[i]],
|
| 463 |
+
# width=1.0, # Set the width to make bars touch each other
|
| 464 |
+
# color=[color],
|
| 465 |
+
# )
|
| 466 |
+
|
| 467 |
+
# # Additional styling
|
| 468 |
+
# ax.set_title("Importance Score per Token", size=25)
|
| 469 |
+
# ax.set_xlabel("Token")
|
| 470 |
+
# ax.set_ylabel("Importance Value")
|
| 471 |
+
# ax.set_xticks(range(len(df["token"])))
|
| 472 |
+
# ax.set_xticklabels(df["token"], rotation=45)
|
| 473 |
+
|
| 474 |
+
# return fig
|
| 475 |
+
@st.cache_data
|
| 476 |
+
def analyze_heatmap(df_input):
|
| 477 |
+
df = df_input.copy()
|
| 478 |
+
df["Position"] = range(len(df))
|
| 479 |
+
|
| 480 |
+
# Get the Blues colormap
|
| 481 |
+
blues = matplotlib.cm.get_cmap("Blues")
|
| 482 |
+
# Create a Matplotlib figure and axis
|
| 483 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 484 |
+
|
| 485 |
+
# Normalize the importance values
|
| 486 |
+
min_val = df["importance_value"].min()
|
| 487 |
+
max_val = df["importance_value"].max()
|
| 488 |
+
normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
| 489 |
+
|
| 490 |
+
# Create the bars, colored based on normalized importance_value
|
| 491 |
+
for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
| 492 |
+
color = blues(norm_value)
|
| 493 |
+
ax.bar(
|
| 494 |
+
x=[i], # Use index for x-axis
|
| 495 |
+
height=[df["importance_value"].iloc[i]],
|
| 496 |
+
width=1.0, # Set the width to make bars touch each other
|
| 497 |
+
color=[color],
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
# Additional styling
|
| 501 |
+
ax.set_title("Importance Score per Token", size=25)
|
| 502 |
+
ax.set_xlabel("Token")
|
| 503 |
+
ax.set_ylabel("Importance Value")
|
| 504 |
+
ax.set_xticks(range(len(df["token"])))
|
| 505 |
+
ax.set_xticklabels(df["token"], rotation=45)
|
| 506 |
+
|
| 507 |
+
return fig
|
| 508 |
+
|
| 509 |
+
# def analyze_heatmap(df_input):
|
| 510 |
+
# df = df_input.copy()
|
| 511 |
+
# df["Position"] = range(len(df))
|
| 512 |
+
|
| 513 |
+
# # Get the viridis colormap
|
| 514 |
+
# viridis = matplotlib.colormaps["viridis"]
|
| 515 |
+
# # Initialize the figure
|
| 516 |
+
# fig = go.Figure()
|
| 517 |
+
# # Create the histogram bars with viridis coloring
|
| 518 |
+
|
| 519 |
+
# # Normalize the importance values
|
| 520 |
+
# min_val = df["importance_value"].min()
|
| 521 |
+
# max_val = df["importance_value"].max()
|
| 522 |
+
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
| 523 |
+
# # Initialize the figure
|
| 524 |
+
# fig = go.Figure()
|
| 525 |
+
# # Create the bars, colored based on normalized importance_value
|
| 526 |
+
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
| 527 |
+
# color = f"rgb({int(viridis(norm_value)[0] * 255)}, {int(viridis(norm_value)[1] * 255)}, {int(viridis(norm_value)[2] * 255)})"
|
| 528 |
+
# fig.add_trace(
|
| 529 |
+
# go.Bar(
|
| 530 |
+
# x=[i], # Use index for x-axis
|
| 531 |
+
# y=[df["importance_value"].iloc[i]],
|
| 532 |
+
# width=1.0, # Set the width to make bars touch each other
|
| 533 |
+
# marker=dict(color=color),
|
| 534 |
+
# )
|
| 535 |
+
# )
|
| 536 |
+
# # Additional styling
|
| 537 |
+
# fig.update_layout(
|
| 538 |
+
# title=f"Importance Score per Token",
|
| 539 |
+
# title_font={'size': 25},
|
| 540 |
+
# xaxis_title="Token",
|
| 541 |
+
# yaxis_title="Importance Value",
|
| 542 |
+
# showlegend=False,
|
| 543 |
+
# bargap=0, # Remove gap between bars
|
| 544 |
+
# xaxis=dict( # Set tick labels to tokens
|
| 545 |
+
# tickmode="array",
|
| 546 |
+
# tickvals=list(range(len(df["token"]))),
|
| 547 |
+
# ticktext=list(df["token"]),
|
| 548 |
+
# ),
|
| 549 |
+
# )
|
| 550 |
+
# # Rotate x-axis labels by 45 degrees
|
| 551 |
+
# fig.update_xaxes(tickangle=45)
|
| 552 |
+
# return fig
|
| 553 |
+
|
| 554 |
+
############################
|
| 555 |
+
# @st.cache_data
|
| 556 |
+
def integrated_gradients(input_ids, baseline, model, n_steps= 10): #100
|
| 557 |
+
# Convert input_ids and baseline to LongTensors
|
| 558 |
+
input_ids = input_ids.long()
|
| 559 |
+
baseline = baseline.long()
|
| 560 |
+
|
| 561 |
+
# Initialize tensor to store accumulated gradients
|
| 562 |
+
accumulated_grads = None
|
| 563 |
+
|
| 564 |
+
# Create interpolated inputs
|
| 565 |
+
alphas = torch.linspace(0, 1, n_steps)
|
| 566 |
+
delta = input_ids - baseline
|
| 567 |
+
interpolates = [(baseline + (alpha * delta).long()).long() for alpha in alphas] # Explicitly cast to LongTensor
|
| 568 |
+
|
| 569 |
+
# Initialize tqdm progress bar
|
| 570 |
+
pbar = tqdm(total=n_steps, desc="Calculating Integrated Gradients")
|
| 571 |
+
|
| 572 |
+
for interpolate in interpolates:
|
| 573 |
+
|
| 574 |
+
# Update tqdm progress bar
|
| 575 |
+
pbar.update(1)
|
| 576 |
+
|
| 577 |
+
# Convert interpolated samples to embeddings
|
| 578 |
+
interpolate_embedding = model.transformer.wte(interpolate).clone().detach().requires_grad_(True)
|
| 579 |
+
|
| 580 |
+
# Forward pass
|
| 581 |
+
output = model(inputs_embeds=interpolate_embedding, output_attentions=False)[0]
|
| 582 |
+
|
| 583 |
+
# Aggregate the logits across all positions (using sum in this example)
|
| 584 |
+
aggregated_logit = output.sum()
|
| 585 |
+
|
| 586 |
+
# Backward pass to calculate gradients
|
| 587 |
+
aggregated_logit.backward()
|
| 588 |
+
|
| 589 |
+
# Accumulate gradients
|
| 590 |
+
if accumulated_grads is None:
|
| 591 |
+
accumulated_grads = interpolate_embedding.grad.clone()
|
| 592 |
+
else:
|
| 593 |
+
accumulated_grads += interpolate_embedding.grad
|
| 594 |
+
|
| 595 |
+
# Clear gradients
|
| 596 |
+
model.zero_grad()
|
| 597 |
+
interpolate_embedding.grad.zero_()
|
| 598 |
+
|
| 599 |
+
# Close tqdm progress bar
|
| 600 |
+
pbar.close()
|
| 601 |
+
|
| 602 |
+
# Compute average gradients
|
| 603 |
+
avg_grads = accumulated_grads / n_steps
|
| 604 |
+
|
| 605 |
+
# Compute attributions
|
| 606 |
+
with torch.no_grad():
|
| 607 |
+
input_embedding = model.transformer.wte(input_ids)
|
| 608 |
+
baseline_embedding = model.transformer.wte(baseline)
|
| 609 |
+
attributions = (input_embedding - baseline_embedding) * avg_grads
|
| 610 |
+
|
| 611 |
+
return attributions
|
| 612 |
+
# @st.cache_data
|
| 613 |
+
def process_integrated_gradients(input_text, _gpt2tokenizer, model):
|
| 614 |
+
inputs = torch.tensor([_gpt2tokenizer.encode(input_text)])
|
| 615 |
+
|
| 616 |
+
gpt2tokens = decoded_tokens(input_text, _gpt2tokenizer)
|
| 617 |
+
|
| 618 |
+
with torch.no_grad():
|
| 619 |
+
outputs = model(inputs, output_attentions=True, output_hidden_states=True)
|
| 620 |
+
|
| 621 |
+
attentions = outputs[-1]
|
| 622 |
+
|
| 623 |
+
# Initialize a baseline as zero tensor
|
| 624 |
+
baseline = torch.zeros_like(inputs).long()
|
| 625 |
+
|
| 626 |
+
# Compute Integrated Gradients targeting the aggregated sequence output
|
| 627 |
+
attributions = integrated_gradients(inputs, baseline, model)
|
| 628 |
+
|
| 629 |
+
# Convert tensors to numpy array for easier manipulation
|
| 630 |
+
attributions_np = attributions.detach().numpy().sum(axis=2)
|
| 631 |
+
|
| 632 |
+
# Sum across the embedding dimensions to get a single attribution score per token
|
| 633 |
+
attributions_sum = attributions.sum(axis=2).squeeze(0).detach().numpy()
|
| 634 |
+
|
| 635 |
+
l2_norm_attributions = np.linalg.norm(attributions_sum, 2)
|
| 636 |
+
normalized_attributions_sum = attributions_sum / l2_norm_attributions
|
| 637 |
+
|
| 638 |
+
clamped_attributions_sum = np.where(normalized_attributions_sum < 0, 0, normalized_attributions_sum)
|
| 639 |
+
|
| 640 |
+
attribution_df = pd.DataFrame({
|
| 641 |
+
'token': gpt2tokens,
|
| 642 |
+
'importance_value': clamped_attributions_sum
|
| 643 |
+
})
|
| 644 |
+
return attribution_df
|
| 645 |
+
########################
|
| 646 |
+
model_type = 'gpt2'
|
| 647 |
+
model_version = 'gpt2'
|
| 648 |
+
model = GPT2LMHeadModel.from_pretrained(model_version, output_attentions=True)
|
| 649 |
+
_gpt2tokenizer = tiktoken.get_encoding("gpt2")
|
| 650 |
+
#######################
|
| 651 |
+
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
| 652 |
+
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
| 653 |
+
######################
|
| 654 |
+
@st.cache_resource
|
| 655 |
+
def paraphrase(
|
| 656 |
+
question,
|
| 657 |
+
num_beams=5,
|
| 658 |
+
num_beam_groups=5,
|
| 659 |
+
num_return_sequences=5,
|
| 660 |
+
repetition_penalty=10.0,
|
| 661 |
+
diversity_penalty=3.0,
|
| 662 |
+
no_repeat_ngram_size=2,
|
| 663 |
+
temperature=0.7,
|
| 664 |
+
max_length=64 #128
|
| 665 |
+
):
|
| 666 |
+
input_ids = para_tokenizer(
|
| 667 |
+
f'paraphrase: {question}',
|
| 668 |
+
return_tensors="pt", padding="longest",
|
| 669 |
+
max_length=max_length,
|
| 670 |
+
truncation=True,
|
| 671 |
+
).input_ids
|
| 672 |
+
|
| 673 |
+
outputs = para_model.generate(
|
| 674 |
+
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
|
| 675 |
+
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
|
| 676 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
| 677 |
+
max_length=max_length, diversity_penalty=diversity_penalty
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 681 |
+
|
| 682 |
+
return res
|
| 683 |
+
|
| 684 |
+
###########################
|
| 685 |
+
|
| 686 |
+
class SentenceAnalyzer:
|
| 687 |
+
def __init__(self, check, original, _gpt2tokenizer, model):
|
| 688 |
+
self.check = check
|
| 689 |
+
self.original = original
|
| 690 |
+
self._gpt2tokenizer = _gpt2tokenizer
|
| 691 |
+
self.model = model
|
| 692 |
+
self.entity_tags = load_chunk_model(check)
|
| 693 |
+
self.tagged_sentence = generate_tagged_sentence(check, self.entity_tags)
|
| 694 |
+
self.sentence_with_pause = replace_pp_with_pause(check, self.entity_tags)
|
| 695 |
+
self.split_sentences = get_split_sentences(check, self.entity_tags)
|
| 696 |
+
self.colored_output = colorize_tokens(self.entity_tags, check)
|
| 697 |
+
|
| 698 |
+
def analyze(self):
|
| 699 |
+
# st.caption(f"The below :blue[shallow parsing] tags are found for {self.original} prompt:")
|
| 700 |
+
# st.markdown(self.colored_output, unsafe_allow_html=True)
|
| 701 |
+
attribution_df1 = process_integrated_gradients(self.check, self._gpt2tokenizer, self.model)
|
| 702 |
+
st.caption(f":blue[{self.original}]:")
|
| 703 |
+
render_heatmap(self.check, attribution_df1)
|
| 704 |
+
# st.write("Original")
|
| 705 |
+
st.pyplot(analyze_heatmap(attribution_df1))
|
| 706 |
+
# st.write("After [PAUSE]")
|
| 707 |
+
# st.write("Sentence with [PAUSE] Replacement:", self.sentence_with_pause)
|
| 708 |
+
dataframes_list = []
|
| 709 |
+
|
| 710 |
+
for i, split_sentence in enumerate(self.split_sentences):
|
| 711 |
+
# st.write(f"Sentence {i + 1} : {split_sentence}")
|
| 712 |
+
attribution_df1 = process_integrated_gradients(split_sentence, self._gpt2tokenizer, self.model)
|
| 713 |
+
if i < len(self.split_sentences) - 1:
|
| 714 |
+
# Add a row with [PAUSE] and value 0 at the end
|
| 715 |
+
pause_row = pd.DataFrame({'token': '[PAUSE]', 'importance_value': 0},index=[len(attribution_df1)])
|
| 716 |
+
attribution_df1 = pd.concat([attribution_df1,pause_row], ignore_index=True)
|
| 717 |
+
|
| 718 |
+
dataframes_list.append(attribution_df1)
|
| 719 |
+
|
| 720 |
+
# After the loop, you can concatenate the dataframes in the list if needed
|
| 721 |
+
if dataframes_list:
|
| 722 |
+
combined_dataframe = pd.concat(dataframes_list, axis=0)
|
| 723 |
+
combined_dataframe = combined_dataframe[combined_dataframe['token'] != " "].reset_index(drop=True)
|
| 724 |
+
combined_dataframe1 = combined_dataframe[combined_dataframe['token'] != "[PAUSE]"]
|
| 725 |
+
combined_dataframe1.reset_index(drop=True, inplace=True)
|
| 726 |
+
st.write(f"Sentence with [PAUSE] Replacement:")
|
| 727 |
+
# st.dataframe(combined_dataframe1)
|
| 728 |
+
render_heatmap(self.sentence_with_pause,combined_dataframe1)
|
| 729 |
+
# render_heatmap(self.sentence_with_pause,combined_dataframe)
|
| 730 |
+
st.pyplot(analyze_heatmap(combined_dataframe))
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
paraphrase_list=paraphrase(check)
|
| 734 |
+
# st.write(paraphrase_list)
|
| 735 |
+
######################
|
| 736 |
+
|
| 737 |
+
col1, col2 = st.columns(2)
|
| 738 |
+
with col1:
|
| 739 |
+
analyzer = SentenceAnalyzer(check, "Original Prompt", _gpt2tokenizer, model)
|
| 740 |
+
analyzer.analyze()
|
| 741 |
+
with col2:
|
| 742 |
+
ai_gen_text=load_text_gen_model(check)
|
| 743 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 744 |
+
st.write(ai_gen_text)
|
| 745 |
+
|
| 746 |
+
#st.markdown("""<hr style="height:5px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
|
| 747 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:lightblue;" /> """, unsafe_allow_html=True)
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
col3, col4 = st.columns(2)
|
| 751 |
+
with col3:
|
| 752 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[0], "Paraphrase 1", _gpt2tokenizer, model)
|
| 753 |
+
analyzer.analyze()
|
| 754 |
+
with col4:
|
| 755 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[0])
|
| 756 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 757 |
+
st.write(ai_gen_text)
|
| 758 |
+
|
| 759 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
| 760 |
+
|
| 761 |
+
col5, col6 = st.columns(2)
|
| 762 |
+
with col5:
|
| 763 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[1], "Paraphrase 2", _gpt2tokenizer, model)
|
| 764 |
+
analyzer.analyze()
|
| 765 |
+
with col6:
|
| 766 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[1])
|
| 767 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 768 |
+
st.write(ai_gen_text)
|
| 769 |
+
|
| 770 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
| 771 |
+
|
| 772 |
+
col7, col8 = st.columns(2)
|
| 773 |
+
with col7:
|
| 774 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[2], "Paraphrase 3", _gpt2tokenizer, model)
|
| 775 |
+
analyzer.analyze()
|
| 776 |
+
with col8:
|
| 777 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[2])
|
| 778 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 779 |
+
st.write(ai_gen_text)
|
| 780 |
+
|
| 781 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
| 782 |
+
|
| 783 |
+
col9, col10 = st.columns(2)
|
| 784 |
+
with col9:
|
| 785 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[3], "Paraphrase 4", _gpt2tokenizer, model)
|
| 786 |
+
analyzer.analyze()
|
| 787 |
+
with col10:
|
| 788 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[3])
|
| 789 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 790 |
+
st.write(ai_gen_text)
|
| 791 |
+
|
| 792 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
| 793 |
+
|
| 794 |
+
col11, col12 = st.columns(2)
|
| 795 |
+
with col11:
|
| 796 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[4], "Paraphrase 5", _gpt2tokenizer, model)
|
| 797 |
+
analyzer.analyze()
|
| 798 |
+
with col12:
|
| 799 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[4])
|
| 800 |
+
st.caption(':blue[AI generated text by GPT4]')
|
| 801 |
+
st.write(ai_gen_text)
|
| 802 |
+
|
| 803 |
+
|