Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList | |
| from .prompts import format_rag_prompt | |
| from .shared import generation_interrupt | |
| models = { | |
| "Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct", | |
| "Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct", | |
| "Gemma-3-1b-it": "google/gemma-3-1b-it", | |
| } | |
| # List of model names for easy access | |
| model_names = list(models.keys()) | |
| # Custom stopping criteria that checks the interrupt flag | |
| class InterruptCriteria(StoppingCriteria): | |
| def __init__(self, interrupt_event): | |
| self.interrupt_event = interrupt_event | |
| def __call__(self, input_ids, scores, **kwargs): | |
| return self.interrupt_event.is_set() | |
| def generate_summaries(example, model_a_name, model_b_name): | |
| """ | |
| Generates summaries for the given example using the assigned models. | |
| """ | |
| if generation_interrupt.is_set(): | |
| return "", "" | |
| context_text = "" | |
| context_parts = [] | |
| if "full_contexts" in example: | |
| for ctx in example["full_contexts"]: | |
| if isinstance(ctx, dict) and "content" in ctx: | |
| context_parts.append(ctx["content"]) | |
| context_text = "\n---\n".join(context_parts) | |
| else: | |
| raise ValueError("No context found in the example.") | |
| question = example.get("question", "") | |
| if generation_interrupt.is_set(): | |
| return "", "" | |
| summary_a = run_inference(models[model_a_name], context_text, question) | |
| if generation_interrupt.is_set(): | |
| return summary_a, "" | |
| summary_b = run_inference(models[model_b_name], context_text, question) | |
| return summary_a, summary_b | |
| def run_inference(model_name, context, question): | |
| """ | |
| Run inference using the specified model. | |
| """ | |
| if generation_interrupt.is_set(): | |
| return "" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=True) | |
| accepts_sys = ( | |
| "System role not supported" not in tokenizer.chat_template | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| if generation_interrupt.is_set(): | |
| return "" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True | |
| ).to(device) | |
| text_input = format_rag_prompt(question, context, accepts_sys) | |
| if generation_interrupt.is_set(): | |
| return "" | |
| actual_input = tokenizer.apply_chat_template( | |
| text_input, | |
| return_tensors="pt", | |
| tokenize=True, | |
| max_length=2048, | |
| add_generation_prompt=True, | |
| ).to(device) | |
| input_length = actual_input.shape[1] | |
| attention_mask = torch.ones_like(actual_input).to(device) | |
| if generation_interrupt.is_set(): | |
| return "" | |
| stopping_criteria = StoppingCriteriaList([InterruptCriteria(generation_interrupt)]) | |
| with torch.inference_mode(): | |
| outputs = model.generate( | |
| actual_input, | |
| attention_mask=attention_mask, | |
| max_new_tokens=512, | |
| pad_token_id=tokenizer.pad_token_id, | |
| stopping_criteria=stopping_criteria | |
| ) | |
| if generation_interrupt.is_set(): | |
| return "" | |
| result = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) | |
| return result | |
| except Exception as e: | |
| print(f"Error in inference: {e}") | |
| return f"Error generating response: {str(e)[:100]}..." | |
| finally: | |
| if 'model' in locals(): | |
| del model | |
| if 'tokenizer' in locals(): | |
| del tokenizer | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() |