Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
c0fdd5a
1
Parent(s):
e2b5d99
remove bitnet handling completely
Browse files- utils/models.py +2 -46
utils/models.py
CHANGED
|
@@ -11,7 +11,6 @@ from transformers import (
|
|
| 11 |
AutoTokenizer,
|
| 12 |
AutoModelForCausalLM,
|
| 13 |
StoppingCriteria,
|
| 14 |
-
BitNetForCausalLM
|
| 15 |
)
|
| 16 |
from .prompts import format_rag_prompt
|
| 17 |
from .shared import generation_interrupt
|
|
@@ -156,25 +155,7 @@ def run_inference(model_name, context, question):
|
|
| 156 |
|
| 157 |
print("REACHED HERE BEFORE pipe")
|
| 158 |
print(f"Loading model {model_name}...")
|
| 159 |
-
if "
|
| 160 |
-
bitnet_model = BitNetForCausalLM.from_pretrained(
|
| 161 |
-
model_name,
|
| 162 |
-
#device_map="auto",
|
| 163 |
-
torch_dtype=torch.bfloat16,
|
| 164 |
-
#trust_remote_code=True,
|
| 165 |
-
)
|
| 166 |
-
pipe = pipeline(
|
| 167 |
-
"text-generation",
|
| 168 |
-
model=bitnet_model,
|
| 169 |
-
tokenizer=tokenizer,
|
| 170 |
-
#device_map="auto",
|
| 171 |
-
#trust_remote_code=True,
|
| 172 |
-
torch_dtype=torch.bfloat16,
|
| 173 |
-
model_kwargs={
|
| 174 |
-
"attn_implementation": "eager",
|
| 175 |
-
},
|
| 176 |
-
)
|
| 177 |
-
elif "icecream" not in model_name.lower():
|
| 178 |
pipe = pipeline(
|
| 179 |
"text-generation",
|
| 180 |
model=model_name,
|
|
@@ -221,12 +202,8 @@ def run_inference(model_name, context, question):
|
|
| 221 |
**tokenizer_kwargs,
|
| 222 |
)
|
| 223 |
|
| 224 |
-
|
| 225 |
model_inputs = model_inputs.to(model.device)
|
| 226 |
-
|
| 227 |
input_ids = model_inputs.input_ids
|
| 228 |
-
attention_mask = model_inputs.attention_mask
|
| 229 |
-
|
| 230 |
prompt_tokens_length = input_ids.shape[1]
|
| 231 |
|
| 232 |
with torch.inference_mode():
|
|
@@ -235,33 +212,12 @@ def run_inference(model_name, context, question):
|
|
| 235 |
return ""
|
| 236 |
|
| 237 |
output_sequences = model.generate(
|
| 238 |
-
|
| 239 |
-
attention_mask=attention_mask,
|
| 240 |
max_new_tokens=512,
|
| 241 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 242 |
-
pad_token_id=tokenizer.pad_token_id # Addresses the warning
|
| 243 |
)
|
| 244 |
|
| 245 |
generated_token_ids = output_sequences[0][prompt_tokens_length:]
|
| 246 |
result = tokenizer.decode(generated_token_ids, skip_special_tokens=True)
|
| 247 |
-
# elif "bitnet" in model_name.lower():
|
| 248 |
-
# formatted = tokenizer.apply_chat_template(
|
| 249 |
-
# text_input,
|
| 250 |
-
# tokenize=True,
|
| 251 |
-
# return_tensors="pt",
|
| 252 |
-
# return_dict=True,
|
| 253 |
-
# **tokenizer_kwargs,
|
| 254 |
-
# ).to(bitnet_model.device)
|
| 255 |
-
# with torch.inference_mode():
|
| 256 |
-
# # Check interrupt before generation
|
| 257 |
-
# if generation_interrupt.is_set():
|
| 258 |
-
# return ""
|
| 259 |
-
# output_sequences = bitnet_model.generate(
|
| 260 |
-
# **formatted,
|
| 261 |
-
# max_new_tokens=512,
|
| 262 |
-
# )
|
| 263 |
-
|
| 264 |
-
# result = tokenizer.decode(output_sequences[0][formatted['input_ids'].shape[-1]:], skip_special_tokens=True)
|
| 265 |
else: # For other models
|
| 266 |
formatted = pipe.tokenizer.apply_chat_template(
|
| 267 |
text_input,
|
|
|
|
| 11 |
AutoTokenizer,
|
| 12 |
AutoModelForCausalLM,
|
| 13 |
StoppingCriteria,
|
|
|
|
| 14 |
)
|
| 15 |
from .prompts import format_rag_prompt
|
| 16 |
from .shared import generation_interrupt
|
|
|
|
| 155 |
|
| 156 |
print("REACHED HERE BEFORE pipe")
|
| 157 |
print(f"Loading model {model_name}...")
|
| 158 |
+
if "icecream" not in model_name.lower():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
pipe = pipeline(
|
| 160 |
"text-generation",
|
| 161 |
model=model_name,
|
|
|
|
| 202 |
**tokenizer_kwargs,
|
| 203 |
)
|
| 204 |
|
|
|
|
| 205 |
model_inputs = model_inputs.to(model.device)
|
|
|
|
| 206 |
input_ids = model_inputs.input_ids
|
|
|
|
|
|
|
| 207 |
prompt_tokens_length = input_ids.shape[1]
|
| 208 |
|
| 209 |
with torch.inference_mode():
|
|
|
|
| 212 |
return ""
|
| 213 |
|
| 214 |
output_sequences = model.generate(
|
| 215 |
+
**model_inputs,
|
|
|
|
| 216 |
max_new_tokens=512,
|
|
|
|
|
|
|
| 217 |
)
|
| 218 |
|
| 219 |
generated_token_ids = output_sequences[0][prompt_tokens_length:]
|
| 220 |
result = tokenizer.decode(generated_token_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
else: # For other models
|
| 222 |
formatted = pipe.tokenizer.apply_chat_template(
|
| 223 |
text_input,
|