Spaces:
Runtime error
Runtime error
File size: 11,279 Bytes
6a6a2f0 224eae3 6a6a2f0 224eae3 6a6a2f0 224eae3 6a6a2f0 224eae3 6a6a2f0 9b41a1c 6a6a2f0 71ca584 6a6a2f0 71ca584 6a6a2f0 71ca584 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 71ca584 6a6a2f0 9eabdce 6a6a2f0 9db4084 224eae3 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9db4084 6a6a2f0 9b41a1c 9db4084 9b41a1c 9db4084 9b41a1c 9db4084 9b41a1c 9db4084 9b41a1c 9db4084 9b41a1c 9db4084 9b41a1c 6a6a2f0 9db4084 9b41a1c 6a6a2f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import cv2
import numpy as np
from typing import Optional
import tempfile
import os
import spaces
MID = "apple/FastVLM-7B"
IMAGE_TOKEN_INDEX = -200
# Initialize model variables
tok = None
model = None
def load_model():
global tok, model
if tok is None or model is None:
print("Loading FastVLM model...")
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float16,
device_map="cuda",
trust_remote_code=True,
)
print("Model loaded successfully!")
return tok, model
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
"""Extract frames from video"""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames == 0:
cap.release()
return []
frames = []
if sampling_method == "uniform":
# Uniform sampling
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
elif sampling_method == "first":
# Take first N frames
indices = list(range(min(num_frames, total_frames)))
elif sampling_method == "last":
# Take last N frames
start = max(0, total_frames - num_frames)
indices = list(range(start, total_frames))
else: # middle
# Take frames from the middle
start = max(0, (total_frames - num_frames) // 2)
indices = list(range(start, min(start + num_frames, total_frames)))
for idx in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
cap.release()
return frames
@spaces.GPU(duration=60)
def caption_frame(image: Image.Image, prompt: str) -> str:
"""Generate caption for a single frame"""
# Load model on GPU
tok, model = load_model()
# Build chat with custom prompt
messages = [
{"role": "user", "content": f"<image>\n{prompt}"}
]
rendered = tok.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
pre, post = rendered.split("<image>", 1)
# Tokenize the text around the image token
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Splice in the IMAGE token id
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# Preprocess image
px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# Generate
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=15,
temperature=0.7,
do_sample=True,
)
caption = tok.decode(out[0], skip_special_tokens=True)
# Extract only the generated part
if prompt in caption:
caption = caption.split(prompt)[-1].strip()
return caption
def process_video(
video_path: str,
num_frames: int,
sampling_method: str,
caption_mode: str,
custom_prompt: str,
progress=gr.Progress()
) -> tuple:
"""Process video and generate captions"""
if not video_path:
return "Please upload a video first.", None
progress(0, desc="Extracting frames...")
frames = extract_frames(video_path, num_frames, sampling_method)
if not frames:
return "Failed to extract frames from video.", None
# Use brief one-sentence prompt for faster processing
prompt = "Provide a brief one-sentence description of what's happening in this image."
captions = []
frame_previews = []
for i, frame in enumerate(frames):
progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
caption = caption_frame(frame, prompt)
captions.append(f"Frame {i + 1}: {caption}")
frame_previews.append(frame)
progress(1.0, desc="Generating summary...")
# Combine captions into a simple narrative
full_caption = "\n".join(captions)
# Generate overall summary if multiple frames
if len(frames) > 1:
video_summary = f"Analyzed {len(frames)} frames:\n\n{full_caption}"
else:
video_summary = f"Video Analysis:\n\n{full_caption}"
return video_summary, frame_previews
# Create the Gradio interface
# Create custom Apple-inspired theme
class AppleTheme(gr.themes.Base):
def __init__(self):
super().__init__(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.gray,
neutral_hue=gr.themes.colors.gray,
spacing_size=gr.themes.sizes.spacing_md,
radius_size=gr.themes.sizes.radius_md,
text_size=gr.themes.sizes.text_md,
font=[
gr.themes.GoogleFont("Inter"),
"-apple-system",
"BlinkMacSystemFont",
"SF Pro Display",
"SF Pro Text",
"Helvetica Neue",
"Helvetica",
"Arial",
"sans-serif"
],
font_mono=[
gr.themes.GoogleFont("SF Mono"),
"ui-monospace",
"Consolas",
"monospace"
]
)
super().set(
# Core colors
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_950",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
button_primary_border_color="*primary_500",
# Shadows
block_shadow="0 4px 12px rgba(0, 0, 0, 0.08)",
# Borders
block_border_width="1px",
block_border_color="*neutral_200",
input_border_width="1px",
input_border_color="*neutral_300",
input_border_color_focus="*primary_500",
# Text
block_title_text_weight="600",
block_label_text_weight="500",
block_label_text_size="13px",
block_label_text_color="*neutral_600",
body_text_color="*neutral_900",
# Spacing
layout_gap="16px",
block_padding="20px",
# Specific components
slider_color="*primary_500",
)
# Create the Gradio interface with the custom theme
with gr.Blocks(theme=AppleTheme()) as demo:
gr.Markdown("# π¬ FastVLM Video Captioning")
with gr.Row():
# Main video display
with gr.Column(scale=7):
video_display = gr.Video(
label="Video Input",
autoplay=True,
loop=True
)
# Sidebar with chat interface
with gr.Sidebar(width=400):
gr.Markdown("## π¬ Video Analysis Chat")
chatbot = gr.Chatbot(
value=[["Assistant", "Upload a video and I'll analyze it for you!"]],
height=400,
elem_classes=["chatbot"]
)
process_btn = gr.Button("π― Analyze Video", variant="primary", size="lg")
with gr.Accordion("πΌοΈ Analyzed Frames", open=False):
frame_gallery = gr.Gallery(
label="Extracted Frames",
show_label=False,
columns=2,
rows=4,
object_fit="contain",
height="auto"
)
# Hidden parameters with default values
num_frames = gr.State(value=8)
sampling_method = gr.State(value="uniform")
caption_mode = gr.State(value="Brief Summary")
custom_prompt = gr.State(value="")
# Upload handler
def handle_upload(video, chat_history):
if video:
chat_history.append(["User", "Video uploaded"])
chat_history.append(["Assistant", "Video loaded! Click 'Analyze Video' to generate captions."])
return video, chat_history
return None, chat_history
video_display.upload(
handle_upload,
inputs=[video_display, chatbot],
outputs=[video_display, chatbot]
)
# Modified process function to update chatbot with streaming
def process_video_with_chat(video_path, num_frames, sampling_method, caption_mode, custom_prompt, chat_history, progress=gr.Progress()):
if not video_path:
chat_history.append(["Assistant", "Please upload a video first."])
yield chat_history, None
return
chat_history.append(["User", "Analyzing video..."])
yield chat_history, None
# Extract frames
progress(0, desc="Extracting frames...")
frames = extract_frames(video_path, num_frames, sampling_method)
if not frames:
chat_history.append(["Assistant", "Failed to extract frames from video."])
yield chat_history, None
return
# Start streaming response
chat_history.append(["Assistant", ""])
prompt = "Provide a brief one-sentence description of what's happening in this image."
captions = []
for i, frame in enumerate(frames):
progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
caption = caption_frame(frame, prompt)
frame_caption = f"Frame {i + 1}: {caption}\n"
captions.append(frame_caption)
# Update the last message with accumulated captions
current_text = "".join(captions)
chat_history[-1] = ["Assistant", f"Analyzing {len(frames)} frames:\n\n{current_text}"]
yield chat_history, frames[:i+1] # Also update frame gallery progressively
progress(1.0, desc="Analysis complete!")
# Final update with complete message
full_caption = "".join(captions)
final_message = f"Analyzed {len(frames)} frames:\n\n{full_caption}"
chat_history[-1] = ["Assistant", final_message]
yield chat_history, frames
# Process button with streaming
process_btn.click(
process_video_with_chat,
inputs=[video_display, num_frames, sampling_method, caption_mode, custom_prompt, chatbot],
outputs=[chatbot, frame_gallery],
show_progress=True
)
demo.launch() |