File size: 11,279 Bytes
6a6a2f0
 
 
 
 
 
 
 
 
224eae3
6a6a2f0
 
 
 
224eae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6a2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224eae3
6a6a2f0
 
224eae3
 
6a6a2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b41a1c
6a6a2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ca584
6a6a2f0
 
 
 
 
71ca584
6a6a2f0
71ca584
 
6a6a2f0
 
 
 
 
 
 
9db4084
6a6a2f0
 
 
 
9db4084
 
6a6a2f0
 
 
9db4084
6a6a2f0
9db4084
6a6a2f0
71ca584
6a6a2f0
 
9eabdce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6a2f0
 
 
 
 
 
 
 
 
 
 
9db4084
224eae3
9db4084
6a6a2f0
9db4084
 
 
 
 
6a6a2f0
 
 
 
 
 
 
 
 
 
 
 
 
9db4084
 
 
 
 
6a6a2f0
 
9db4084
6a6a2f0
9db4084
 
 
 
6a6a2f0
 
 
9db4084
 
6a6a2f0
 
9b41a1c
 
9db4084
 
9b41a1c
 
9db4084
 
9b41a1c
9db4084
9b41a1c
 
 
9db4084
9b41a1c
 
 
 
9db4084
9b41a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db4084
9b41a1c
6a6a2f0
9db4084
 
9b41a1c
 
6a6a2f0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import cv2
import numpy as np
from typing import Optional
import tempfile
import os
import spaces

MID = "apple/FastVLM-7B"
IMAGE_TOKEN_INDEX = -200

# Initialize model variables
tok = None
model = None

def load_model():
    global tok, model
    if tok is None or model is None:
        print("Loading FastVLM model...")
        tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(
            MID,
            torch_dtype=torch.float16,
            device_map="cuda",
            trust_remote_code=True,
        )
        print("Model loaded successfully!")
    return tok, model

def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
    """Extract frames from video"""
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    if total_frames == 0:
        cap.release()
        return []
    
    frames = []
    
    if sampling_method == "uniform":
        # Uniform sampling
        indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
    elif sampling_method == "first":
        # Take first N frames
        indices = list(range(min(num_frames, total_frames)))
    elif sampling_method == "last":
        # Take last N frames
        start = max(0, total_frames - num_frames)
        indices = list(range(start, total_frames))
    else:  # middle
        # Take frames from the middle
        start = max(0, (total_frames - num_frames) // 2)
        indices = list(range(start, min(start + num_frames, total_frames)))
    
    for idx in indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            # Convert BGR to RGB
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame_rgb))
    
    cap.release()
    return frames

@spaces.GPU(duration=60)
def caption_frame(image: Image.Image, prompt: str) -> str:
    """Generate caption for a single frame"""
    # Load model on GPU
    tok, model = load_model()
    # Build chat with custom prompt
    messages = [
        {"role": "user", "content": f"<image>\n{prompt}"}
    ]
    rendered = tok.apply_chat_template(
        messages, add_generation_prompt=True, tokenize=False
    )
    pre, post = rendered.split("<image>", 1)
    
    # Tokenize the text around the image token
    pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
    post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
    
    # Splice in the IMAGE token id
    img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
    input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
    attention_mask = torch.ones_like(input_ids, device=model.device)
    
    # Preprocess image
    px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
    px = px.to(model.device, dtype=model.dtype)
    
    # Generate
    with torch.no_grad():
        out = model.generate(
            inputs=input_ids,
            attention_mask=attention_mask,
            images=px,
            max_new_tokens=15,
            temperature=0.7,
            do_sample=True,
        )
    
    caption = tok.decode(out[0], skip_special_tokens=True)
    # Extract only the generated part
    if prompt in caption:
        caption = caption.split(prompt)[-1].strip()
    
    return caption

def process_video(
    video_path: str,
    num_frames: int,
    sampling_method: str,
    caption_mode: str,
    custom_prompt: str,
    progress=gr.Progress()
) -> tuple:
    """Process video and generate captions"""
    
    if not video_path:
        return "Please upload a video first.", None
    
    progress(0, desc="Extracting frames...")
    frames = extract_frames(video_path, num_frames, sampling_method)
    
    if not frames:
        return "Failed to extract frames from video.", None
    
    # Use brief one-sentence prompt for faster processing
    prompt = "Provide a brief one-sentence description of what's happening in this image."
    
    captions = []
    frame_previews = []
    
    for i, frame in enumerate(frames):
        progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
        caption = caption_frame(frame, prompt)
        captions.append(f"Frame {i + 1}: {caption}")
        frame_previews.append(frame)
    
    progress(1.0, desc="Generating summary...")
    
    # Combine captions into a simple narrative
    full_caption = "\n".join(captions)
    
    # Generate overall summary if multiple frames
    if len(frames) > 1:
        video_summary = f"Analyzed {len(frames)} frames:\n\n{full_caption}"
    else:
        video_summary = f"Video Analysis:\n\n{full_caption}"
    
    return video_summary, frame_previews

# Create the Gradio interface
# Create custom Apple-inspired theme
class AppleTheme(gr.themes.Base):
    def __init__(self):
        super().__init__(
            primary_hue=gr.themes.colors.blue,
            secondary_hue=gr.themes.colors.gray,
            neutral_hue=gr.themes.colors.gray,
            spacing_size=gr.themes.sizes.spacing_md,
            radius_size=gr.themes.sizes.radius_md,
            text_size=gr.themes.sizes.text_md,
            font=[
                gr.themes.GoogleFont("Inter"),
                "-apple-system",
                "BlinkMacSystemFont",
                "SF Pro Display",
                "SF Pro Text",
                "Helvetica Neue",
                "Helvetica",
                "Arial",
                "sans-serif"
            ],
            font_mono=[
                gr.themes.GoogleFont("SF Mono"),
                "ui-monospace",
                "Consolas",
                "monospace"
            ]
        )
        super().set(
            # Core colors
            body_background_fill="*neutral_50",
            body_background_fill_dark="*neutral_950",
            button_primary_background_fill="*primary_500",
            button_primary_background_fill_hover="*primary_600",
            button_primary_text_color="white",
            button_primary_border_color="*primary_500",
            
            # Shadows
            block_shadow="0 4px 12px rgba(0, 0, 0, 0.08)",
            
            # Borders
            block_border_width="1px",
            block_border_color="*neutral_200",
            input_border_width="1px",
            input_border_color="*neutral_300",
            input_border_color_focus="*primary_500",
            
            # Text
            block_title_text_weight="600",
            block_label_text_weight="500",
            block_label_text_size="13px",
            block_label_text_color="*neutral_600",
            body_text_color="*neutral_900",
            
            # Spacing
            layout_gap="16px",
            block_padding="20px",
            
            # Specific components
            slider_color="*primary_500",
        )

# Create the Gradio interface with the custom theme
with gr.Blocks(theme=AppleTheme()) as demo:
    gr.Markdown("# 🎬 FastVLM Video Captioning")
    
    with gr.Row():
        # Main video display
        with gr.Column(scale=7):
            video_display = gr.Video(
                label="Video Input",
                autoplay=True,
                loop=True
            )
        
        # Sidebar with chat interface
        with gr.Sidebar(width=400):
            gr.Markdown("## πŸ’¬ Video Analysis Chat")
            
            chatbot = gr.Chatbot(
                value=[["Assistant", "Upload a video and I'll analyze it for you!"]],
                height=400,
                elem_classes=["chatbot"]
            )
            
            process_btn = gr.Button("🎯 Analyze Video", variant="primary", size="lg")
            
            with gr.Accordion("πŸ–ΌοΈ Analyzed Frames", open=False):
                frame_gallery = gr.Gallery(
                    label="Extracted Frames",
                    show_label=False,
                    columns=2,
                    rows=4,
                    object_fit="contain",
                    height="auto"
                )
    
    # Hidden parameters with default values
    num_frames = gr.State(value=8)
    sampling_method = gr.State(value="uniform")
    caption_mode = gr.State(value="Brief Summary")
    custom_prompt = gr.State(value="")
    
    # Upload handler
    def handle_upload(video, chat_history):
        if video:
            chat_history.append(["User", "Video uploaded"])
            chat_history.append(["Assistant", "Video loaded! Click 'Analyze Video' to generate captions."])
            return video, chat_history
        return None, chat_history
    
    video_display.upload(
        handle_upload,
        inputs=[video_display, chatbot],
        outputs=[video_display, chatbot]
    )
    
    # Modified process function to update chatbot with streaming
    def process_video_with_chat(video_path, num_frames, sampling_method, caption_mode, custom_prompt, chat_history, progress=gr.Progress()):
        if not video_path:
            chat_history.append(["Assistant", "Please upload a video first."])
            yield chat_history, None
            return
        
        chat_history.append(["User", "Analyzing video..."])
        yield chat_history, None
        
        # Extract frames
        progress(0, desc="Extracting frames...")
        frames = extract_frames(video_path, num_frames, sampling_method)
        
        if not frames:
            chat_history.append(["Assistant", "Failed to extract frames from video."])
            yield chat_history, None
            return
        
        # Start streaming response
        chat_history.append(["Assistant", ""])
        prompt = "Provide a brief one-sentence description of what's happening in this image."
        
        captions = []
        for i, frame in enumerate(frames):
            progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
            caption = caption_frame(frame, prompt)
            frame_caption = f"Frame {i + 1}: {caption}\n"
            captions.append(frame_caption)
            
            # Update the last message with accumulated captions
            current_text = "".join(captions)
            chat_history[-1] = ["Assistant", f"Analyzing {len(frames)} frames:\n\n{current_text}"]
            yield chat_history, frames[:i+1]  # Also update frame gallery progressively
        
        progress(1.0, desc="Analysis complete!")
        
        # Final update with complete message
        full_caption = "".join(captions)
        final_message = f"Analyzed {len(frames)} frames:\n\n{full_caption}"
        chat_history[-1] = ["Assistant", final_message]
        yield chat_history, frames
    
    # Process button with streaming
    process_btn.click(
        process_video_with_chat,
        inputs=[video_display, num_frames, sampling_method, caption_mode, custom_prompt, chatbot],
        outputs=[chatbot, frame_gallery],
        show_progress=True
    )
    
    demo.launch()