Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
c5e7a23
1
Parent(s):
1fbd109
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,6 +54,9 @@ generatoryasuho = deepcopy(original_generator)
|
|
| 54 |
|
| 55 |
generatorarcanemulti = deepcopy(original_generator)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
|
@@ -99,6 +102,11 @@ os.system("gdown https://drive.google.com/uc?id=1enJgrC08NpWpx2XGBmLt1laimjpGCyf
|
|
| 99 |
ckptarcanemulti = torch.load('arcane_multi_preserve_color.pt', map_location=lambda storage, loc: storage)
|
| 100 |
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
def inference(img, model):
|
| 104 |
aligned_face = align_face(img)
|
|
@@ -119,9 +127,12 @@ def inference(img, model):
|
|
| 119 |
elif model == 'Yasuho':
|
| 120 |
with torch.no_grad():
|
| 121 |
my_sample = generatoryasuho(my_w, input_is_latent=True)
|
| 122 |
-
|
| 123 |
with torch.no_grad():
|
| 124 |
my_sample = generatorarcanemulti(my_w, input_is_latent=True)
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
|
|
|
|
| 54 |
|
| 55 |
generatorarcanemulti = deepcopy(original_generator)
|
| 56 |
|
| 57 |
+
generatorart = deepcopy(original_generator)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
|
| 61 |
|
| 62 |
|
|
|
|
| 102 |
ckptarcanemulti = torch.load('arcane_multi_preserve_color.pt', map_location=lambda storage, loc: storage)
|
| 103 |
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)
|
| 104 |
|
| 105 |
+
os.system("gdown https://drive.google.com/uc?id=1a0QDEHwXQ6hE_FcYEyNMuv5r5UnRQLKT")
|
| 106 |
+
|
| 107 |
+
ckptart = torch.load('art.pt', map_location=lambda storage, loc: storage)
|
| 108 |
+
generatorart.load_state_dict(ckptart["g"], strict=False)
|
| 109 |
+
|
| 110 |
|
| 111 |
def inference(img, model):
|
| 112 |
aligned_face = align_face(img)
|
|
|
|
| 127 |
elif model == 'Yasuho':
|
| 128 |
with torch.no_grad():
|
| 129 |
my_sample = generatoryasuho(my_w, input_is_latent=True)
|
| 130 |
+
elif model == 'Arcane Multi':
|
| 131 |
with torch.no_grad():
|
| 132 |
my_sample = generatorarcanemulti(my_w, input_is_latent=True)
|
| 133 |
+
else:
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
my_sample = generatorart(my_w, input_is_latent=True)
|
| 136 |
|
| 137 |
|
| 138 |
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
|