Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| import spaces | |
| from diffusers import FluxPipeline | |
| from safetensors.torch import load_file | |
| # Load the model | |
| pipe = FluxPipeline.from_pretrained( | |
| 'black-forest-labs/FLUX.1-dev', | |
| torch_dtype=torch.bfloat16, | |
| use_safetensors=True | |
| ).to('cuda') | |
| # Load SRPO weights | |
| from huggingface_hub import hf_hub_download | |
| srpo_path = hf_hub_download( | |
| repo_id="tencent/SRPO", | |
| filename="diffusion_pytorch_model.safetensors" | |
| ) | |
| state_dict = load_file(srpo_path) | |
| pipe.transformer.load_state_dict(state_dict) | |
| def generate_image( | |
| prompt, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=3.5, | |
| num_inference_steps=50, | |
| seed=-1 | |
| ): | |
| if seed == -1: | |
| seed = torch.randint(0, 2**32, (1,)).item() | |
| generator = torch.Generator(device='cuda').manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| max_sequence_length=512, | |
| generator=generator | |
| ).images[0] | |
| return image, seed | |
| with gr.Blocks(title="FLUX SRPO Text-to-Image", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")) as demo: | |
| gr.Markdown("# Flux SRPO") | |
| gr.Markdown("Generate images using FLUX model enhanced with Tencent's SRPO technique") | |
| gr.Markdown("Built with [AnyCoder](https://huggingface.co/spaces/akhaliq/anycoder)") | |
| output_image = gr.Image(label="Generated Image", type="pil") | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Describe the image you want to generate...", | |
| lines=3 | |
| ) | |
| generate_btn = gr.Button("Generate Image", variant="primary", size="lg") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| width = gr.Slider( | |
| minimum=256, | |
| maximum=2048, | |
| value=1024, | |
| step=64, | |
| label="Width" | |
| ) | |
| height = gr.Slider( | |
| minimum=256, | |
| maximum=2048, | |
| value=1024, | |
| step=64, | |
| label="Height" | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| minimum=1.0, | |
| maximum=20.0, | |
| value=3.5, | |
| step=0.5, | |
| label="Guidance Scale" | |
| ) | |
| num_inference_steps = gr.Slider( | |
| minimum=10, | |
| maximum=100, | |
| value=50, | |
| step=5, | |
| label="Inference Steps" | |
| ) | |
| seed = gr.Number( | |
| label="Seed (-1 for random)", | |
| value=-1, | |
| precision=0 | |
| ) | |
| used_seed = gr.Number(label="Seed Used", precision=0) | |
| gr.Examples( | |
| examples=[ | |
| ["The Death of Ophelia by John Everett Millais, Pre-Raphaelite painting, Ophelia floating in a river surrounded by flowers, detailed natural elements, melancholic and tragic atmosphere"], | |
| ["A serene Japanese garden with cherry blossoms, koi pond, traditional wooden bridge, soft morning light, photorealistic"], | |
| ["Cyberpunk cityscape at night, neon lights, flying cars, rain-slicked streets, blade runner aesthetic, highly detailed"], | |
| ["Portrait of a majestic lion in golden hour light, detailed fur texture, intense gaze, African savanna background"], | |
| ["Abstract colorful explosion of paint in water, high speed photography, vibrant colors mixing, dramatic lighting"], | |
| ], | |
| inputs=prompt, | |
| label="Example Prompts" | |
| ) | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed], | |
| outputs=[output_image, used_seed] | |
| ) | |
| demo.launch() |