Spaces:
Running
Running
| import os | |
| import re | |
| from http import HTTPStatus | |
| from typing import Dict, List, Optional, Tuple | |
| import base64 | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import modelscope_studio.components.base as ms | |
| import modelscope_studio.components.legacy as legacy | |
| import modelscope_studio.components.antd as antd | |
| # Configuration | |
| SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. | |
| When asked to create an application, you should: | |
| 1. Understand the user's requirements | |
| 2. Generate clean, working code | |
| 3. Provide HTML output when appropriate for web applications | |
| 4. Include necessary comments and documentation | |
| 5. Ensure the code is functional and follows best practices | |
| If an image is provided, analyze it and use the visual information to better understand the user's requirements. | |
| Always respond with code that can be executed or rendered directly. | |
| Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" | |
| # Available models | |
| AVAILABLE_MODELS = [ | |
| { | |
| "name": "DeepSeek V3", | |
| "id": "deepseek-ai/DeepSeek-V3-0324", | |
| "description": "DeepSeek V3 model for code generation" | |
| }, | |
| { | |
| "name": "DeepSeek R1", | |
| "id": "deepseek-ai/DeepSeek-R1-0528", | |
| "description": "DeepSeek R1 model for code generation" | |
| }, | |
| { | |
| "name": "ERNIE-4.5-VL", | |
| "id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", | |
| "description": "ERNIE-4.5-VL model for multimodal code generation with image support" | |
| } | |
| ] | |
| DEMO_LIST = [ | |
| { | |
| "title": "Todo App", | |
| "description": "Create a simple todo application with add, delete, and mark as complete functionality" | |
| }, | |
| { | |
| "title": "Calculator", | |
| "description": "Build a basic calculator with addition, subtraction, multiplication, and division" | |
| }, | |
| { | |
| "title": "Weather Dashboard", | |
| "description": "Create a weather dashboard that displays current weather information" | |
| }, | |
| { | |
| "title": "Chat Interface", | |
| "description": "Build a chat interface with message history and user input" | |
| }, | |
| { | |
| "title": "E-commerce Product Card", | |
| "description": "Create a product card component for an e-commerce website" | |
| }, | |
| { | |
| "title": "Login Form", | |
| "description": "Build a responsive login form with validation" | |
| }, | |
| { | |
| "title": "Dashboard Layout", | |
| "description": "Create a dashboard layout with sidebar navigation and main content area" | |
| }, | |
| { | |
| "title": "Data Table", | |
| "description": "Build a data table with sorting and filtering capabilities" | |
| }, | |
| { | |
| "title": "Image Gallery", | |
| "description": "Create an image gallery with lightbox functionality and responsive grid layout" | |
| }, | |
| { | |
| "title": "UI from Image", | |
| "description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" | |
| } | |
| ] | |
| # HF Inference Client | |
| YOUR_API_TOKEN = os.getenv('HF_TOKEN') | |
| client = InferenceClient( | |
| provider="auto", | |
| api_key=YOUR_API_TOKEN, | |
| bill_to="huggingface" | |
| ) | |
| History = List[Tuple[str, str]] | |
| Messages = List[Dict[str, str]] | |
| def history_to_messages(history: History, system: str) -> Messages: | |
| messages = [{'role': 'system', 'content': system}] | |
| for h in history: | |
| # Handle multimodal content in history | |
| user_content = h[0] | |
| if isinstance(user_content, list): | |
| # Extract text from multimodal content | |
| text_content = "" | |
| for item in user_content: | |
| if isinstance(item, dict) and item.get("type") == "text": | |
| text_content += item.get("text", "") | |
| user_content = text_content if text_content else str(user_content) | |
| messages.append({'role': 'user', 'content': user_content}) | |
| messages.append({'role': 'assistant', 'content': h[1]}) | |
| return messages | |
| def messages_to_history(messages: Messages) -> Tuple[str, History]: | |
| assert messages[0]['role'] == 'system' | |
| history = [] | |
| for q, r in zip(messages[1::2], messages[2::2]): | |
| # Extract text content from multimodal messages for history | |
| user_content = q['content'] | |
| if isinstance(user_content, list): | |
| text_content = "" | |
| for item in user_content: | |
| if isinstance(item, dict) and item.get("type") == "text": | |
| text_content += item.get("text", "") | |
| user_content = text_content if text_content else str(user_content) | |
| history.append([user_content, r['content']]) | |
| return history | |
| def remove_code_block(text): | |
| # Try to match code blocks with language markers | |
| patterns = [ | |
| r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML | |
| r'```\n([\s\S]+?)\n```', # Match code blocks without language markers | |
| r'```([\s\S]+?)```' # Match code blocks without line breaks | |
| ] | |
| for pattern in patterns: | |
| match = re.search(pattern, text, re.DOTALL) | |
| if match: | |
| extracted = match.group(1).strip() | |
| return extracted | |
| # If no code block is found, check if the entire text is HTML | |
| if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html'): | |
| return text.strip() | |
| return text.strip() | |
| def history_render(history: History): | |
| return gr.update(open=True), history | |
| def clear_history(): | |
| return [] | |
| def update_image_input_visibility(model): | |
| """Update image input visibility based on selected model""" | |
| is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" | |
| return gr.update(visible=is_ernie_vl) | |
| def process_image_for_model(image): | |
| """Convert image to base64 for model input""" | |
| if image is None: | |
| return None | |
| # Convert numpy array to PIL Image if needed | |
| import io | |
| import base64 | |
| import numpy as np | |
| from PIL import Image | |
| # Handle numpy array from Gradio | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| buffer = io.BytesIO() | |
| image.save(buffer, format='PNG') | |
| img_str = base64.b64encode(buffer.getvalue()).decode() | |
| return f"data:image/png;base64,{img_str}" | |
| def create_multimodal_message(text, image=None): | |
| """Create a multimodal message with text and optional image""" | |
| if image is None: | |
| return {"role": "user", "content": text} | |
| content = [ | |
| { | |
| "type": "text", | |
| "text": text | |
| }, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": process_image_for_model(image) | |
| } | |
| } | |
| ] | |
| return {"role": "user", "content": content} | |
| def send_to_sandbox(code): | |
| # Add a wrapper to inject necessary permissions and ensure full HTML | |
| wrapped_code = f""" | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <meta charset=\"UTF-8\"> | |
| <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> | |
| <script> | |
| // Safe localStorage polyfill | |
| const safeStorage = {{ | |
| _data: {{}}, | |
| getItem: function(key) {{ return this._data[key] || null; }}, | |
| setItem: function(key, value) {{ this._data[key] = value; }}, | |
| removeItem: function(key) {{ delete this._data[key]; }}, | |
| clear: function() {{ this._data = {{}}; }} | |
| }}; | |
| Object.defineProperty(window, 'localStorage', {{ | |
| value: safeStorage, | |
| writable: false | |
| }}); | |
| window.onerror = function(message, source, lineno, colno, error) {{ | |
| console.error('Error:', message); | |
| }}; | |
| </script> | |
| </head> | |
| <body> | |
| {code} | |
| </body> | |
| </html> | |
| """ | |
| encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') | |
| data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
| iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' | |
| return iframe | |
| def demo_card_click(e: gr.EventData): | |
| try: | |
| # Get the index from the event data | |
| if hasattr(e, '_data') and e._data: | |
| # Try different ways to get the index | |
| if 'index' in e._data: | |
| index = e._data['index'] | |
| elif 'component' in e._data and 'index' in e._data['component']: | |
| index = e._data['component']['index'] | |
| elif 'target' in e._data and 'index' in e._data['target']: | |
| index = e._data['target']['index'] | |
| else: | |
| # If we can't get the index, try to extract it from the card data | |
| index = 0 | |
| else: | |
| index = 0 | |
| # Ensure index is within bounds | |
| if index >= len(DEMO_LIST): | |
| index = 0 | |
| return DEMO_LIST[index]['description'] | |
| except (KeyError, IndexError, AttributeError) as e: | |
| # Return the first demo description as fallback | |
| return DEMO_LIST[0]['description'] | |
| # Main application | |
| with gr.Blocks(css_paths="app.css") as demo: | |
| history = gr.State([]) | |
| setting = gr.State({ | |
| "system": SystemPrompt, | |
| }) | |
| current_model = gr.State(AVAILABLE_MODELS[0]) # Default to first model | |
| with ms.Application() as app: | |
| with antd.ConfigProvider(): | |
| with antd.Row(gutter=[32, 12]) as layout: | |
| with antd.Col(span=24, md=8): | |
| with antd.Flex(vertical=True, gap="middle", wrap=True): | |
| header = gr.HTML(""" | |
| <div class="left_header"> | |
| <img src="https://huggingface.co/spaces/akhaliq/anycoder/resolve/main/Animated_Logo_Video_Ready.gif" width="200px" /> | |
| <h1>AnyCoder</h1> | |
| </div> | |
| """) | |
| current_model_display = gr.Markdown("**Current Model:** DeepSeek V3") | |
| input = antd.InputTextarea( | |
| size="large", allow_clear=True, placeholder="Please enter what kind of application you want") | |
| image_input = gr.Image(label="Upload an image (only for ERNIE-4.5-VL model)", visible=False) | |
| btn = antd.Button("send", type="primary", size="large") | |
| clear_btn = antd.Button("clear history", type="default", size="large") | |
| antd.Divider("examples") | |
| with antd.Flex(gap="small", wrap=True) as examples_flex: | |
| for i, demo_item in enumerate(DEMO_LIST): | |
| with antd.Card(hoverable=True, title=demo_item["title"]) as demoCard: | |
| antd.CardMeta(description=demo_item["description"]) | |
| demoCard.click(lambda e, idx=i: (DEMO_LIST[idx]['description'], None), outputs=[input, image_input]) | |
| antd.Divider("setting") | |
| with antd.Flex(gap="small", wrap=True) as setting_flex: | |
| settingPromptBtn = antd.Button( | |
| "βοΈ set system Prompt", type="default") | |
| modelBtn = antd.Button("π€ switch model", type="default") | |
| codeBtn = antd.Button("π§βπ» view code", type="default") | |
| historyBtn = antd.Button("π history", type="default") | |
| with antd.Modal(open=False, title="set system Prompt", width="800px") as system_prompt_modal: | |
| systemPromptInput = antd.InputTextarea( | |
| SystemPrompt, auto_size=True) | |
| settingPromptBtn.click(lambda: gr.update( | |
| open=True), inputs=[], outputs=[system_prompt_modal]) | |
| system_prompt_modal.ok(lambda input: ({"system": input}, gr.update( | |
| open=False)), inputs=[systemPromptInput], outputs=[setting, system_prompt_modal]) | |
| system_prompt_modal.cancel(lambda: gr.update( | |
| open=False), outputs=[system_prompt_modal]) | |
| with antd.Modal(open=False, title="Select Model", width="600px") as model_modal: | |
| with antd.Flex(vertical=True, gap="middle"): | |
| for i, model in enumerate(AVAILABLE_MODELS): | |
| with antd.Card(hoverable=True, title=model["name"]) as modelCard: | |
| antd.CardMeta(description=model["description"]) | |
| modelCard.click(lambda m=model: (m, gr.update(open=False), f"**Current Model:** {m['name']}", update_image_input_visibility(m)), outputs=[current_model, model_modal, current_model_display, image_input]) | |
| modelBtn.click(lambda: gr.update(open=True), inputs=[], outputs=[model_modal]) | |
| with antd.Drawer(open=False, title="code", placement="left", width="750px") as code_drawer: | |
| code_output = legacy.Markdown() | |
| codeBtn.click(lambda: gr.update(open=True), | |
| inputs=[], outputs=[code_drawer]) | |
| code_drawer.close(lambda: gr.update( | |
| open=False), inputs=[], outputs=[code_drawer]) | |
| with antd.Drawer(open=False, title="history", placement="left", width="900px") as history_drawer: | |
| history_output = legacy.Chatbot(show_label=False, flushing=False, height=960, elem_classes="history_chatbot") | |
| historyBtn.click(history_render, inputs=[history], outputs=[history_drawer, history_output]) | |
| history_drawer.close(lambda: gr.update( | |
| open=False), inputs=[], outputs=[history_drawer]) | |
| with antd.Col(span=24, md=16): | |
| with ms.Div(elem_classes="right_panel"): | |
| gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>') | |
| # Move sandbox outside of tabs for always-on visibility | |
| sandbox = gr.HTML(elem_classes="html_content") | |
| with antd.Tabs(active_key="empty", render_tab_bar="() => null") as state_tab: | |
| with antd.Tabs.Item(key="empty"): | |
| empty = antd.Empty(description="empty input", elem_classes="right_content") | |
| with antd.Tabs.Item(key="loading"): | |
| loading = antd.Spin(True, tip="coding...", size="large", elem_classes="right_content") | |
| def generation_code(query: Optional[str], image: Optional[gr.Image], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict): | |
| if query is None: | |
| query = '' | |
| if _history is None: | |
| _history = [] | |
| messages = history_to_messages(_history, _setting['system']) | |
| # Create multimodal message if image is provided | |
| if image is not None: | |
| messages.append(create_multimodal_message(query, image)) | |
| else: | |
| messages.append({'role': 'user', 'content': query}) | |
| try: | |
| completion = client.chat.completions.create( | |
| model=_current_model["id"], | |
| messages=messages, | |
| stream=True, | |
| max_tokens=5000 # Higher max_tokens for more complete applications while maintaining reasonable speed | |
| ) | |
| content = "" | |
| for chunk in completion: | |
| if chunk.choices[0].delta.content: | |
| content += chunk.choices[0].delta.content | |
| yield { | |
| code_output: content, | |
| state_tab: gr.update(active_key="loading"), | |
| code_drawer: gr.update(open=True), | |
| } | |
| # Final response | |
| _history = messages_to_history(messages + [{ | |
| 'role': 'assistant', | |
| 'content': content | |
| }]) | |
| yield { | |
| code_output: content, | |
| history: _history, | |
| sandbox: send_to_sandbox(remove_code_block(content)), | |
| state_tab: gr.update(active_key="render"), | |
| code_drawer: gr.update(open=False), | |
| } | |
| except Exception as e: | |
| error_message = f"Error: {str(e)}" | |
| yield { | |
| code_output: error_message, | |
| state_tab: gr.update(active_key="empty"), | |
| code_drawer: gr.update(open=True), | |
| } | |
| btn.click( | |
| generation_code, | |
| inputs=[input, image_input, setting, history, current_model], | |
| outputs=[code_output, history, sandbox, state_tab, code_drawer] | |
| ) | |
| clear_btn.click(clear_history, inputs=[], outputs=[history]) | |
| if __name__ == "__main__": | |
| demo.queue(default_concurrency_limit=20).launch(ssr_mode=False) |