Spaces:
Running
Running
fix for model changing
Browse files
app.py
CHANGED
|
@@ -14,161 +14,139 @@ import together_gradio
|
|
| 14 |
import nvidia_gradio
|
| 15 |
import dashscope_gradio
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
with gr.Blocks(fill_height=True) as demo:
|
|
|
|
| 20 |
with gr.Tab("Meta Llama"):
|
| 21 |
with gr.Row():
|
| 22 |
llama_model = gr.Dropdown(
|
| 23 |
choices=[
|
| 24 |
-
'Meta-Llama-3.2-1B-Instruct',
|
| 25 |
-
'Meta-Llama-3.2-3B-Instruct',
|
| 26 |
-
'Llama-3.2-11B-Vision-Instruct',
|
| 27 |
-
'Llama-3.2-90B-Vision-Instruct',
|
| 28 |
-
'Meta-Llama-3.1-8B-Instruct',
|
| 29 |
-
'Meta-Llama-3.1-70B-Instruct',
|
| 30 |
-
'Meta-Llama-3.1-405B-Instruct'
|
| 31 |
],
|
| 32 |
-
value='Llama-3.2-90B-Vision-Instruct',
|
| 33 |
label="Select Llama Model",
|
| 34 |
interactive=True
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
src=sambanova_gradio.registry,
|
| 40 |
-
multimodal=True,
|
| 41 |
-
fill_height=True
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
def update_llama_model(new_model):
|
| 45 |
-
return gr.load(
|
| 46 |
-
name=new_model,
|
| 47 |
-
src=sambanova_gradio.registry,
|
| 48 |
-
multimodal=True,
|
| 49 |
-
fill_height=True
|
| 50 |
-
)
|
| 51 |
|
| 52 |
llama_model.change(
|
| 53 |
-
fn=
|
| 54 |
inputs=[llama_model],
|
| 55 |
-
outputs=[
|
| 56 |
)
|
| 57 |
|
| 58 |
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
|
|
|
|
|
|
|
| 59 |
with gr.Tab("Gemini"):
|
| 60 |
with gr.Row():
|
| 61 |
gemini_model = gr.Dropdown(
|
| 62 |
choices=[
|
| 63 |
-
'gemini-1.5-flash',
|
| 64 |
-
'gemini-1.5-flash-8b',
|
| 65 |
-
'gemini-1.5-pro',
|
| 66 |
-
'gemini-exp-1114'
|
| 67 |
],
|
| 68 |
-
value='gemini-1.5-pro',
|
| 69 |
label="Select Gemini Model",
|
| 70 |
interactive=True
|
| 71 |
)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
src=gemini_gradio.registry,
|
| 76 |
-
fill_height=True
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
def update_gemini_model(new_model):
|
| 80 |
-
return gr.load(
|
| 81 |
-
name=new_model,
|
| 82 |
-
src=gemini_gradio.registry,
|
| 83 |
-
fill_height=True
|
| 84 |
-
)
|
| 85 |
|
| 86 |
gemini_model.change(
|
| 87 |
-
fn=
|
| 88 |
inputs=[gemini_model],
|
| 89 |
-
outputs=[
|
| 90 |
)
|
|
|
|
|
|
|
| 91 |
with gr.Tab("ChatGPT"):
|
| 92 |
with gr.Row():
|
| 93 |
model_choice = gr.Dropdown(
|
| 94 |
choices=[
|
| 95 |
-
'gpt-4o-2024-11-20',
|
| 96 |
-
'gpt-4o',
|
| 97 |
-
'gpt-4o-2024-08-06',
|
| 98 |
-
'gpt-4o-2024-05-13',
|
| 99 |
-
'chatgpt-4o-latest',
|
| 100 |
-
'gpt-4o-mini',
|
| 101 |
-
'gpt-4o-mini-2024-07-18',
|
| 102 |
-
'o1-preview',
|
| 103 |
-
'o1-preview-2024-09-12',
|
| 104 |
-
'o1-mini',
|
| 105 |
-
'o1-mini-2024-09-12',
|
| 106 |
-
'gpt-4-turbo',
|
| 107 |
-
'gpt-4-turbo-2024-04-09',
|
| 108 |
-
'gpt-4-turbo-preview',
|
| 109 |
-
'gpt-4-0125-preview',
|
| 110 |
-
'gpt-4-1106-preview',
|
| 111 |
-
'gpt-4',
|
| 112 |
-
'gpt-4-0613'
|
| 113 |
],
|
| 114 |
-
value='gpt-4o-2024-11-20',
|
| 115 |
label="Select Model",
|
| 116 |
interactive=True
|
| 117 |
)
|
| 118 |
-
|
| 119 |
-
chatgpt_interface = gr.load(
|
| 120 |
-
name=model_choice.value,
|
| 121 |
-
src=openai_gradio.registry,
|
| 122 |
-
fill_height=True
|
| 123 |
-
)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
name=new_model,
|
| 128 |
-
src=openai_gradio.registry,
|
| 129 |
-
fill_height=True
|
| 130 |
-
)
|
| 131 |
|
| 132 |
model_choice.change(
|
| 133 |
-
fn=update_model,
|
| 134 |
inputs=[model_choice],
|
| 135 |
-
outputs=[
|
| 136 |
)
|
|
|
|
|
|
|
| 137 |
with gr.Tab("Claude"):
|
| 138 |
with gr.Row():
|
| 139 |
claude_model = gr.Dropdown(
|
| 140 |
choices=[
|
| 141 |
-
'claude-3-5-sonnet-20241022',
|
| 142 |
-
'claude-3-5-haiku-20241022',
|
| 143 |
-
'claude-3-opus-20240229',
|
| 144 |
-
'claude-3-sonnet-20240229',
|
| 145 |
-
'claude-3-haiku-20240307'
|
| 146 |
],
|
| 147 |
-
value='claude-3-5-sonnet-20241022',
|
| 148 |
label="Select Model",
|
| 149 |
interactive=True
|
| 150 |
)
|
| 151 |
-
|
| 152 |
-
claude_interface = gr.load(
|
| 153 |
-
name=claude_model.value,
|
| 154 |
-
src=anthropic_gradio.registry,
|
| 155 |
-
accept_token=True,
|
| 156 |
-
fill_height=True
|
| 157 |
-
)
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
name=new_model,
|
| 162 |
-
src=anthropic_gradio.registry,
|
| 163 |
-
accept_token=True,
|
| 164 |
-
fill_height=True
|
| 165 |
-
)
|
| 166 |
|
| 167 |
claude_model.change(
|
| 168 |
-
fn=
|
| 169 |
inputs=[claude_model],
|
| 170 |
-
outputs=[
|
| 171 |
)
|
|
|
|
|
|
|
| 172 |
with gr.Tab("Grok"):
|
| 173 |
with gr.Row():
|
| 174 |
grok_model = gr.Dropdown(
|
|
@@ -180,86 +158,58 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 180 |
label="Select Grok Model",
|
| 181 |
interactive=True
|
| 182 |
)
|
| 183 |
-
|
| 184 |
-
grok_interface = gr.load(
|
| 185 |
-
name=grok_model.value,
|
| 186 |
-
src=xai_gradio.registry,
|
| 187 |
-
fill_height=True
|
| 188 |
-
)
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
name=new_model,
|
| 193 |
-
src=xai_gradio.registry,
|
| 194 |
-
fill_height=True
|
| 195 |
-
)
|
| 196 |
|
| 197 |
grok_model.change(
|
| 198 |
-
fn=
|
| 199 |
inputs=[grok_model],
|
| 200 |
-
outputs=[
|
| 201 |
)
|
|
|
|
|
|
|
| 202 |
with gr.Tab("Hugging Face"):
|
| 203 |
with gr.Row():
|
| 204 |
hf_model = gr.Dropdown(
|
| 205 |
choices=[
|
| 206 |
-
# Latest Large Models
|
| 207 |
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 208 |
'Qwen/Qwen2.5-72B-Instruct',
|
| 209 |
'meta-llama/Llama-3.1-70B-Instruct',
|
| 210 |
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
| 211 |
-
# Mid-size Models
|
| 212 |
'meta-llama/Llama-3.1-8B-Instruct',
|
| 213 |
'google/gemma-2-9b-it',
|
| 214 |
'mistralai/Mistral-7B-v0.1',
|
| 215 |
'meta-llama/Llama-2-7b-chat-hf',
|
| 216 |
-
# Smaller Models
|
| 217 |
'meta-llama/Llama-3.2-3B-Instruct',
|
| 218 |
'meta-llama/Llama-3.2-1B-Instruct',
|
| 219 |
'Qwen/Qwen2.5-1.5B-Instruct',
|
| 220 |
'microsoft/Phi-3.5-mini-instruct',
|
| 221 |
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
| 222 |
'google/gemma-2-2b-it',
|
| 223 |
-
# Base Models
|
| 224 |
'meta-llama/Llama-3.2-3B',
|
| 225 |
'meta-llama/Llama-3.2-1B',
|
| 226 |
'openai-community/gpt2'
|
| 227 |
],
|
| 228 |
-
value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
| 229 |
label="Select Hugging Face Model",
|
| 230 |
interactive=True
|
| 231 |
)
|
| 232 |
-
|
| 233 |
-
hf_interface = gr.load(
|
| 234 |
-
name=hf_model.value,
|
| 235 |
-
src="models", # Use direct model loading from HF
|
| 236 |
-
fill_height=True
|
| 237 |
-
)
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
name=new_model,
|
| 242 |
-
src="models",
|
| 243 |
-
fill_height=True
|
| 244 |
-
)
|
| 245 |
|
| 246 |
hf_model.change(
|
| 247 |
-
fn=
|
| 248 |
inputs=[hf_model],
|
| 249 |
-
outputs=[
|
| 250 |
)
|
| 251 |
|
| 252 |
gr.Markdown("""
|
| 253 |
**Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
|
| 254 |
-
|
| 255 |
-
Models are organized by size:
|
| 256 |
-
- **Large Models**: 32B-72B parameters
|
| 257 |
-
- **Mid-size Models**: 7B-9B parameters
|
| 258 |
-
- **Smaller Models**: 1B-3B parameters
|
| 259 |
-
- **Base Models**: Original architectures
|
| 260 |
-
|
| 261 |
-
Visit [Hugging Face](https://huggingface.co/) to learn more about available models.
|
| 262 |
""")
|
|
|
|
|
|
|
| 263 |
with gr.Tab("Groq"):
|
| 264 |
with gr.Row():
|
| 265 |
groq_model = gr.Dropdown(
|
|
@@ -274,282 +224,159 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 274 |
'gemma2-9b-it',
|
| 275 |
'gemma-7b-it'
|
| 276 |
],
|
| 277 |
-
value='llama3-groq-70b-8192-tool-use-preview',
|
| 278 |
label="Select Groq Model",
|
| 279 |
interactive=True
|
| 280 |
)
|
| 281 |
-
|
| 282 |
-
groq_interface = gr.load(
|
| 283 |
-
name=groq_model.value,
|
| 284 |
-
src=groq_gradio.registry,
|
| 285 |
-
fill_height=True
|
| 286 |
-
)
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
name=new_model,
|
| 291 |
-
src=groq_gradio.registry,
|
| 292 |
-
fill_height=True
|
| 293 |
-
)
|
| 294 |
|
| 295 |
groq_model.change(
|
| 296 |
-
fn=
|
| 297 |
inputs=[groq_model],
|
| 298 |
-
outputs=[
|
| 299 |
)
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
**Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/).
|
| 303 |
-
""")
|
| 304 |
with gr.Tab("Hyperbolic"):
|
| 305 |
with gr.Row():
|
| 306 |
hyperbolic_model = gr.Dropdown(
|
| 307 |
choices=[
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
'
|
| 314 |
-
'
|
| 315 |
-
'
|
| 316 |
-
'meta-llama/Meta-Llama-3.1-
|
| 317 |
-
'meta-llama/Meta-Llama-3-70B-Instruct', # 8K context
|
| 318 |
-
'NousResearch/Hermes-3-Llama-3.1-70B', # 12K context
|
| 319 |
-
'Qwen/Qwen2.5-72B-Instruct', # 32K context
|
| 320 |
-
'deepseek-ai/DeepSeek-V2.5', # 8K context
|
| 321 |
-
'meta-llama/Meta-Llama-3.1-405B-Instruct', # 8K context
|
| 322 |
],
|
| 323 |
value='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 324 |
label="Select Hyperbolic Model",
|
| 325 |
interactive=True
|
| 326 |
)
|
| 327 |
-
|
| 328 |
-
hyperbolic_interface = gr.load(
|
| 329 |
-
name=hyperbolic_model.value,
|
| 330 |
-
src=hyperbolic_gradio.registry,
|
| 331 |
-
fill_height=True
|
| 332 |
-
)
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
name=new_model,
|
| 337 |
-
src=hyperbolic_gradio.registry,
|
| 338 |
-
fill_height=True
|
| 339 |
-
)
|
| 340 |
|
| 341 |
hyperbolic_model.change(
|
| 342 |
-
fn=
|
| 343 |
inputs=[hyperbolic_model],
|
| 344 |
-
outputs=[
|
| 345 |
)
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
<div>
|
| 349 |
-
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
|
| 350 |
-
</div>
|
| 351 |
-
|
| 352 |
-
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
|
| 353 |
-
""")
|
| 354 |
with gr.Tab("Qwen"):
|
| 355 |
with gr.Row():
|
| 356 |
qwen_model = gr.Dropdown(
|
| 357 |
choices=[
|
| 358 |
-
# Proprietary Qwen Models
|
| 359 |
'qwen-turbo-latest',
|
| 360 |
'qwen-turbo',
|
| 361 |
'qwen-plus',
|
| 362 |
'qwen-max',
|
| 363 |
-
# Open Source Qwen Models
|
| 364 |
'qwen1.5-110b-chat',
|
| 365 |
'qwen1.5-72b-chat',
|
| 366 |
'qwen1.5-32b-chat',
|
| 367 |
'qwen1.5-14b-chat',
|
| 368 |
'qwen1.5-7b-chat'
|
| 369 |
],
|
| 370 |
-
value='qwen-turbo-latest',
|
| 371 |
label="Select Qwen Model",
|
| 372 |
interactive=True
|
| 373 |
)
|
| 374 |
-
|
| 375 |
-
qwen_interface = gr.load(
|
| 376 |
-
name=qwen_model.value,
|
| 377 |
-
src=dashscope_gradio.registry,
|
| 378 |
-
fill_height=True
|
| 379 |
-
)
|
| 380 |
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
name=new_model,
|
| 384 |
-
src=dashscope_gradio.registry,
|
| 385 |
-
fill_height=True
|
| 386 |
-
)
|
| 387 |
|
| 388 |
qwen_model.change(
|
| 389 |
-
fn=
|
| 390 |
inputs=[qwen_model],
|
| 391 |
-
outputs=[
|
| 392 |
)
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
**Note:** You need a DashScope API key to use these models. Get one at [DashScope](https://dashscope.aliyun.com/).
|
| 396 |
-
|
| 397 |
-
Models available in two categories:
|
| 398 |
-
- **Proprietary Models**:
|
| 399 |
-
- Qwen Turbo: Fast responses for general tasks
|
| 400 |
-
- Qwen Plus: Balanced performance and quality
|
| 401 |
-
- Qwen Max: Highest quality responses
|
| 402 |
-
- **Open Source Models**:
|
| 403 |
-
- Available in various sizes from 7B to 110B parameters
|
| 404 |
-
- Based on the Qwen 1.5 architecture
|
| 405 |
-
""")
|
| 406 |
with gr.Tab("Perplexity"):
|
| 407 |
with gr.Row():
|
| 408 |
perplexity_model = gr.Dropdown(
|
| 409 |
choices=[
|
| 410 |
-
|
| 411 |
-
'llama-3.1-sonar-
|
| 412 |
-
'llama-3.1-sonar-
|
| 413 |
-
'llama-3.1-sonar-
|
| 414 |
-
|
| 415 |
-
'llama-3.1-
|
| 416 |
-
'llama-3.1-
|
| 417 |
-
# Open Source Models
|
| 418 |
-
'llama-3.1-8b-instruct', # 8B params
|
| 419 |
-
'llama-3.1-70b-instruct' # 70B params
|
| 420 |
],
|
| 421 |
-
value='llama-3.1-sonar-large-128k-online',
|
| 422 |
label="Select Perplexity Model",
|
| 423 |
interactive=True
|
| 424 |
)
|
| 425 |
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
src=perplexity_gradio.registry,
|
| 429 |
-
accept_token=True,
|
| 430 |
-
fill_height=True
|
| 431 |
-
)
|
| 432 |
-
|
| 433 |
-
def update_perplexity_model(new_model):
|
| 434 |
-
return gr.load(
|
| 435 |
-
name=new_model,
|
| 436 |
-
src=perplexity_gradio.registry,
|
| 437 |
-
accept_token=True,
|
| 438 |
-
fill_height=True
|
| 439 |
-
)
|
| 440 |
|
| 441 |
perplexity_model.change(
|
| 442 |
-
fn=
|
| 443 |
inputs=[perplexity_model],
|
| 444 |
-
outputs=[
|
| 445 |
)
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
**Note:** Models are grouped into three categories:
|
| 449 |
-
- **Sonar Online Models**: Include search capabilities (beta access required)
|
| 450 |
-
- **Sonar Chat Models**: Standard chat models
|
| 451 |
-
- **Open Source Models**: Based on Hugging Face implementations
|
| 452 |
-
|
| 453 |
-
For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
|
| 454 |
-
""")
|
| 455 |
-
with gr.Tab("DeepSeek-V2.5"):
|
| 456 |
-
gr.load(
|
| 457 |
-
name='deepseek-ai/DeepSeek-V2.5',
|
| 458 |
-
src=hyperbolic_gradio.registry,
|
| 459 |
-
fill_height=True
|
| 460 |
-
)
|
| 461 |
-
gr.Markdown("""
|
| 462 |
-
<div>
|
| 463 |
-
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
|
| 464 |
-
</div>
|
| 465 |
-
|
| 466 |
-
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
|
| 467 |
-
""")
|
| 468 |
with gr.Tab("Mistral"):
|
| 469 |
with gr.Row():
|
| 470 |
mistral_model = gr.Dropdown(
|
| 471 |
choices=[
|
| 472 |
-
|
| 473 |
-
'
|
| 474 |
-
'
|
| 475 |
-
'ministral-
|
| 476 |
-
'
|
| 477 |
-
'
|
| 478 |
-
'
|
| 479 |
-
'mistral-
|
| 480 |
-
'
|
| 481 |
-
|
| 482 |
-
'
|
| 483 |
-
'open-mistral-nemo', # Multilingual model (128k)
|
| 484 |
-
'open-codestral-mamba' # Mamba-based coding model (256k)
|
| 485 |
],
|
| 486 |
-
value='pixtral-large-latest',
|
| 487 |
label="Select Mistral Model",
|
| 488 |
interactive=True
|
| 489 |
)
|
| 490 |
-
|
| 491 |
-
mistral_interface = gr.load(
|
| 492 |
-
name=mistral_model.value,
|
| 493 |
-
src=mistral_gradio.registry,
|
| 494 |
-
fill_height=True
|
| 495 |
-
)
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
name=new_model,
|
| 500 |
-
src=mistral_gradio.registry,
|
| 501 |
-
fill_height=True
|
| 502 |
-
)
|
| 503 |
|
| 504 |
mistral_model.change(
|
| 505 |
-
fn=
|
| 506 |
inputs=[mistral_model],
|
| 507 |
-
outputs=[
|
| 508 |
)
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
**Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/).
|
| 512 |
-
|
| 513 |
-
Models are grouped into two categories:
|
| 514 |
-
- **Premier Models**: Require a paid API key
|
| 515 |
-
- **Free Models**: Available with free API keys
|
| 516 |
-
|
| 517 |
-
Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities.
|
| 518 |
-
""")
|
| 519 |
with gr.Tab("Fireworks"):
|
| 520 |
with gr.Row():
|
| 521 |
fireworks_model = gr.Dropdown(
|
| 522 |
choices=[
|
| 523 |
-
'f1-preview',
|
| 524 |
-
'f1-mini-preview'
|
| 525 |
],
|
| 526 |
-
value='f1-preview',
|
| 527 |
label="Select Fireworks Model",
|
| 528 |
interactive=True
|
| 529 |
)
|
| 530 |
-
|
| 531 |
-
fireworks_interface = gr.load(
|
| 532 |
-
name=fireworks_model.value,
|
| 533 |
-
src=fireworks_gradio.registry,
|
| 534 |
-
fill_height=True
|
| 535 |
-
)
|
| 536 |
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
name=new_model,
|
| 540 |
-
src=fireworks_gradio.registry,
|
| 541 |
-
fill_height=True
|
| 542 |
-
)
|
| 543 |
|
| 544 |
fireworks_model.change(
|
| 545 |
-
fn=
|
| 546 |
inputs=[fireworks_model],
|
| 547 |
-
outputs=[
|
| 548 |
)
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
**Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/).
|
| 552 |
-
""")
|
| 553 |
with gr.Tab("Cerebras"):
|
| 554 |
with gr.Row():
|
| 555 |
cerebras_model = gr.Dropdown(
|
|
@@ -558,120 +385,87 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 558 |
'llama3.1-70b',
|
| 559 |
'llama3.1-405b'
|
| 560 |
],
|
| 561 |
-
value='llama3.1-70b',
|
| 562 |
label="Select Cerebras Model",
|
| 563 |
interactive=True
|
| 564 |
)
|
| 565 |
-
|
| 566 |
-
cerebras_interface = gr.load(
|
| 567 |
-
name=cerebras_model.value,
|
| 568 |
-
src=cerebras_gradio.registry,
|
| 569 |
-
accept_token=True, # Added token acceptance
|
| 570 |
-
fill_height=True
|
| 571 |
-
)
|
| 572 |
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
name=new_model,
|
| 576 |
-
src=cerebras_gradio.registry,
|
| 577 |
-
accept_token=True, # Added token acceptance
|
| 578 |
-
fill_height=True
|
| 579 |
-
)
|
| 580 |
|
| 581 |
cerebras_model.change(
|
| 582 |
-
fn=
|
| 583 |
inputs=[cerebras_model],
|
| 584 |
-
outputs=[
|
| 585 |
)
|
|
|
|
|
|
|
| 586 |
with gr.Tab("Together"):
|
| 587 |
with gr.Row():
|
| 588 |
together_model = gr.Dropdown(
|
| 589 |
choices=[
|
| 590 |
-
|
| 591 |
-
'meta-llama/Llama-Vision-
|
| 592 |
-
'meta-llama/Llama-3.2-
|
| 593 |
-
'meta-llama/Llama-3.
|
| 594 |
-
|
| 595 |
-
'meta-llama/Meta-Llama-3.1-
|
| 596 |
-
'meta-llama/Meta-Llama-3
|
| 597 |
-
'meta-llama/Meta-Llama-3
|
| 598 |
-
'meta-llama/
|
| 599 |
-
'meta-llama/Meta-Llama-3-
|
| 600 |
-
'meta-llama/Llama-3
|
| 601 |
-
'meta-llama/
|
| 602 |
-
'meta-llama/
|
| 603 |
-
'
|
| 604 |
-
'
|
| 605 |
-
|
| 606 |
-
'
|
| 607 |
-
'
|
| 608 |
-
'
|
| 609 |
-
'
|
| 610 |
-
'
|
| 611 |
-
'
|
| 612 |
-
|
| 613 |
-
'
|
| 614 |
-
'
|
| 615 |
-
|
| 616 |
-
'
|
| 617 |
-
'
|
| 618 |
-
'
|
| 619 |
-
|
| 620 |
-
'
|
| 621 |
-
'
|
| 622 |
-
'
|
| 623 |
-
'
|
| 624 |
-
'mistralai/Mistral-7B-Instruct-v0.1', # 8k context
|
| 625 |
-
'mistralai/Mistral-7B-Instruct-v0.2', # 32k context
|
| 626 |
-
'mistralai/Mistral-7B-Instruct-v0.3', # 32k context
|
| 627 |
-
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', # 32k context
|
| 628 |
-
'togethercomputer/StripedHyena-Nous-7B', # 32k context
|
| 629 |
-
'upstage/SOLAR-10.7B-Instruct-v1.0' # 4k context
|
| 630 |
],
|
| 631 |
-
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
| 632 |
label="Select Together Model",
|
| 633 |
interactive=True
|
| 634 |
)
|
| 635 |
-
|
| 636 |
-
together_interface = gr.load(
|
| 637 |
-
name=together_model.value,
|
| 638 |
-
src=together_gradio.registry,
|
| 639 |
-
multimodal=True,
|
| 640 |
-
fill_height=True
|
| 641 |
-
)
|
| 642 |
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
name=new_model,
|
| 646 |
-
src=together_gradio.registry,
|
| 647 |
-
multimodal=True,
|
| 648 |
-
fill_height=True
|
| 649 |
-
)
|
| 650 |
|
| 651 |
together_model.change(
|
| 652 |
-
fn=
|
| 653 |
inputs=[together_model],
|
| 654 |
-
outputs=[
|
| 655 |
)
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
**Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/).
|
| 659 |
-
""")
|
| 660 |
with gr.Tab("NVIDIA"):
|
| 661 |
with gr.Row():
|
| 662 |
nvidia_model = gr.Dropdown(
|
| 663 |
choices=[
|
| 664 |
-
# NVIDIA Models
|
| 665 |
'nvidia/llama3-chatqa-1.5-70b',
|
| 666 |
'nvidia/llama3-chatqa-1.5-8b',
|
| 667 |
'nvidia-nemotron-4-340b-instruct',
|
| 668 |
-
|
| 669 |
-
'meta/llama-3.1-70b-instruct', # Added Llama 3.1 70B
|
| 670 |
'meta/codellama-70b',
|
| 671 |
'meta/llama2-70b',
|
| 672 |
'meta/llama3-8b',
|
| 673 |
'meta/llama3-70b',
|
| 674 |
-
# Mistral Models
|
| 675 |
'mistralai/codestral-22b-instruct-v0.1',
|
| 676 |
'mistralai/mathstral-7b-v0.1',
|
| 677 |
'mistralai/mistral-large-2-instruct',
|
|
@@ -680,7 +474,6 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 680 |
'mistralai/mixtral-8x7b-instruct',
|
| 681 |
'mistralai/mixtral-8x22b-instruct',
|
| 682 |
'mistralai/mistral-large',
|
| 683 |
-
# Google Models
|
| 684 |
'google/gemma-2b',
|
| 685 |
'google/gemma-7b',
|
| 686 |
'google/gemma-2-2b-it',
|
|
@@ -690,57 +483,31 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 690 |
'google/codegemma-7b',
|
| 691 |
'google/recurrentgemma-2b',
|
| 692 |
'google/shieldgemma-9b',
|
| 693 |
-
# Microsoft Phi-3 Models
|
| 694 |
'microsoft/phi-3-medium-128k-instruct',
|
| 695 |
'microsoft/phi-3-medium-4k-instruct',
|
| 696 |
'microsoft/phi-3-mini-128k-instruct',
|
| 697 |
'microsoft/phi-3-mini-4k-instruct',
|
| 698 |
'microsoft/phi-3-small-128k-instruct',
|
| 699 |
'microsoft/phi-3-small-8k-instruct',
|
| 700 |
-
# Other Models
|
| 701 |
'qwen/qwen2-7b-instruct',
|
| 702 |
'databricks/dbrx-instruct',
|
| 703 |
'deepseek-ai/deepseek-coder-6.7b-instruct',
|
| 704 |
'upstage/solar-10.7b-instruct',
|
| 705 |
'snowflake/arctic'
|
| 706 |
],
|
| 707 |
-
value='meta/llama-3.1-70b-instruct',
|
| 708 |
label="Select NVIDIA Model",
|
| 709 |
interactive=True
|
| 710 |
)
|
| 711 |
-
|
| 712 |
-
nvidia_interface = gr.load(
|
| 713 |
-
name=nvidia_model.value,
|
| 714 |
-
src=nvidia_gradio.registry,
|
| 715 |
-
accept_token=True,
|
| 716 |
-
fill_height=True
|
| 717 |
-
)
|
| 718 |
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
name=new_model,
|
| 722 |
-
src=nvidia_gradio.registry,
|
| 723 |
-
accept_token=True,
|
| 724 |
-
fill_height=True
|
| 725 |
-
)
|
| 726 |
|
| 727 |
nvidia_model.change(
|
| 728 |
-
fn=
|
| 729 |
inputs=[nvidia_model],
|
| 730 |
-
outputs=[
|
| 731 |
)
|
| 732 |
-
|
| 733 |
-
gr.Markdown("""
|
| 734 |
-
**Note:** You need an NVIDIA AI Foundation API key to use these models. Get one at [NVIDIA AI Foundation](https://www.nvidia.com/en-us/ai-data-science/foundation-models/).
|
| 735 |
-
|
| 736 |
-
Models are organized by provider:
|
| 737 |
-
- **NVIDIA**: Native models including Llama3-ChatQA and Nemotron
|
| 738 |
-
- **Meta**: Llama family models
|
| 739 |
-
- **Mistral**: Various Mistral and Mixtral models
|
| 740 |
-
- **Google**: Gemma family models
|
| 741 |
-
- **Microsoft**: Phi-3 series
|
| 742 |
-
- And other providers including Qwen, Databricks, DeepSeek, etc.
|
| 743 |
-
""")
|
| 744 |
|
| 745 |
demo.launch(ssr_mode=False)
|
| 746 |
|
|
|
|
| 14 |
import nvidia_gradio
|
| 15 |
import dashscope_gradio
|
| 16 |
|
| 17 |
+
# Common helper functions for all tabs
|
| 18 |
+
def create_interface(model_name, src_registry, **kwargs):
|
| 19 |
+
return gr.load(
|
| 20 |
+
name=model_name,
|
| 21 |
+
src=src_registry,
|
| 22 |
+
fill_height=True,
|
| 23 |
+
**kwargs
|
| 24 |
+
)
|
| 25 |
|
| 26 |
+
def update_model(new_model, container, src_registry, **kwargs):
|
| 27 |
+
with container:
|
| 28 |
+
container.load_none()
|
| 29 |
+
new_interface = create_interface(new_model, src_registry, **kwargs)
|
| 30 |
+
new_interface.render()
|
| 31 |
|
| 32 |
with gr.Blocks(fill_height=True) as demo:
|
| 33 |
+
# Meta Llama Tab
|
| 34 |
with gr.Tab("Meta Llama"):
|
| 35 |
with gr.Row():
|
| 36 |
llama_model = gr.Dropdown(
|
| 37 |
choices=[
|
| 38 |
+
'Meta-Llama-3.2-1B-Instruct',
|
| 39 |
+
'Meta-Llama-3.2-3B-Instruct',
|
| 40 |
+
'Llama-3.2-11B-Vision-Instruct',
|
| 41 |
+
'Llama-3.2-90B-Vision-Instruct',
|
| 42 |
+
'Meta-Llama-3.1-8B-Instruct',
|
| 43 |
+
'Meta-Llama-3.1-70B-Instruct',
|
| 44 |
+
'Meta-Llama-3.1-405B-Instruct'
|
| 45 |
],
|
| 46 |
+
value='Llama-3.2-90B-Vision-Instruct',
|
| 47 |
label="Select Llama Model",
|
| 48 |
interactive=True
|
| 49 |
)
|
| 50 |
|
| 51 |
+
with gr.Column() as llama_container:
|
| 52 |
+
llama_interface = create_interface(llama_model.value, sambanova_gradio.registry, multimodal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
llama_model.change(
|
| 55 |
+
fn=lambda new_model: update_model(new_model, llama_container, sambanova_gradio.registry, multimodal=True),
|
| 56 |
inputs=[llama_model],
|
| 57 |
+
outputs=[]
|
| 58 |
)
|
| 59 |
|
| 60 |
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
|
| 61 |
+
|
| 62 |
+
# Gemini Tab
|
| 63 |
with gr.Tab("Gemini"):
|
| 64 |
with gr.Row():
|
| 65 |
gemini_model = gr.Dropdown(
|
| 66 |
choices=[
|
| 67 |
+
'gemini-1.5-flash',
|
| 68 |
+
'gemini-1.5-flash-8b',
|
| 69 |
+
'gemini-1.5-pro',
|
| 70 |
+
'gemini-exp-1114'
|
| 71 |
],
|
| 72 |
+
value='gemini-1.5-pro',
|
| 73 |
label="Select Gemini Model",
|
| 74 |
interactive=True
|
| 75 |
)
|
| 76 |
|
| 77 |
+
with gr.Column() as gemini_container:
|
| 78 |
+
gemini_interface = create_interface(gemini_model.value, gemini_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
gemini_model.change(
|
| 81 |
+
fn=lambda new_model: update_model(new_model, gemini_container, gemini_gradio.registry),
|
| 82 |
inputs=[gemini_model],
|
| 83 |
+
outputs=[]
|
| 84 |
)
|
| 85 |
+
|
| 86 |
+
# ChatGPT Tab
|
| 87 |
with gr.Tab("ChatGPT"):
|
| 88 |
with gr.Row():
|
| 89 |
model_choice = gr.Dropdown(
|
| 90 |
choices=[
|
| 91 |
+
'gpt-4o-2024-11-20',
|
| 92 |
+
'gpt-4o',
|
| 93 |
+
'gpt-4o-2024-08-06',
|
| 94 |
+
'gpt-4o-2024-05-13',
|
| 95 |
+
'chatgpt-4o-latest',
|
| 96 |
+
'gpt-4o-mini',
|
| 97 |
+
'gpt-4o-mini-2024-07-18',
|
| 98 |
+
'o1-preview',
|
| 99 |
+
'o1-preview-2024-09-12',
|
| 100 |
+
'o1-mini',
|
| 101 |
+
'o1-mini-2024-09-12',
|
| 102 |
+
'gpt-4-turbo',
|
| 103 |
+
'gpt-4-turbo-2024-04-09',
|
| 104 |
+
'gpt-4-turbo-preview',
|
| 105 |
+
'gpt-4-0125-preview',
|
| 106 |
+
'gpt-4-1106-preview',
|
| 107 |
+
'gpt-4',
|
| 108 |
+
'gpt-4-0613'
|
| 109 |
],
|
| 110 |
+
value='gpt-4o-2024-11-20',
|
| 111 |
label="Select Model",
|
| 112 |
interactive=True
|
| 113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
with gr.Column() as chatgpt_container:
|
| 116 |
+
chatgpt_interface = create_interface(model_choice.value, openai_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
model_choice.change(
|
| 119 |
+
fn=lambda new_model: update_model(new_model, chatgpt_container, openai_gradio.registry),
|
| 120 |
inputs=[model_choice],
|
| 121 |
+
outputs=[]
|
| 122 |
)
|
| 123 |
+
|
| 124 |
+
# Claude Tab
|
| 125 |
with gr.Tab("Claude"):
|
| 126 |
with gr.Row():
|
| 127 |
claude_model = gr.Dropdown(
|
| 128 |
choices=[
|
| 129 |
+
'claude-3-5-sonnet-20241022',
|
| 130 |
+
'claude-3-5-haiku-20241022',
|
| 131 |
+
'claude-3-opus-20240229',
|
| 132 |
+
'claude-3-sonnet-20240229',
|
| 133 |
+
'claude-3-haiku-20240307'
|
| 134 |
],
|
| 135 |
+
value='claude-3-5-sonnet-20241022',
|
| 136 |
label="Select Model",
|
| 137 |
interactive=True
|
| 138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
with gr.Column() as claude_container:
|
| 141 |
+
claude_interface = create_interface(claude_model.value, anthropic_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
claude_model.change(
|
| 144 |
+
fn=lambda new_model: update_model(new_model, claude_container, anthropic_gradio.registry, accept_token=True),
|
| 145 |
inputs=[claude_model],
|
| 146 |
+
outputs=[]
|
| 147 |
)
|
| 148 |
+
|
| 149 |
+
# Grok Tab
|
| 150 |
with gr.Tab("Grok"):
|
| 151 |
with gr.Row():
|
| 152 |
grok_model = gr.Dropdown(
|
|
|
|
| 158 |
label="Select Grok Model",
|
| 159 |
interactive=True
|
| 160 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
with gr.Column() as grok_container:
|
| 163 |
+
grok_interface = create_interface(grok_model.value, xai_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
grok_model.change(
|
| 166 |
+
fn=lambda new_model: update_model(new_model, grok_container, xai_gradio.registry),
|
| 167 |
inputs=[grok_model],
|
| 168 |
+
outputs=[]
|
| 169 |
)
|
| 170 |
+
|
| 171 |
+
# Hugging Face Tab
|
| 172 |
with gr.Tab("Hugging Face"):
|
| 173 |
with gr.Row():
|
| 174 |
hf_model = gr.Dropdown(
|
| 175 |
choices=[
|
|
|
|
| 176 |
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 177 |
'Qwen/Qwen2.5-72B-Instruct',
|
| 178 |
'meta-llama/Llama-3.1-70B-Instruct',
|
| 179 |
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
|
|
|
| 180 |
'meta-llama/Llama-3.1-8B-Instruct',
|
| 181 |
'google/gemma-2-9b-it',
|
| 182 |
'mistralai/Mistral-7B-v0.1',
|
| 183 |
'meta-llama/Llama-2-7b-chat-hf',
|
|
|
|
| 184 |
'meta-llama/Llama-3.2-3B-Instruct',
|
| 185 |
'meta-llama/Llama-3.2-1B-Instruct',
|
| 186 |
'Qwen/Qwen2.5-1.5B-Instruct',
|
| 187 |
'microsoft/Phi-3.5-mini-instruct',
|
| 188 |
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
| 189 |
'google/gemma-2-2b-it',
|
|
|
|
| 190 |
'meta-llama/Llama-3.2-3B',
|
| 191 |
'meta-llama/Llama-3.2-1B',
|
| 192 |
'openai-community/gpt2'
|
| 193 |
],
|
| 194 |
+
value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
| 195 |
label="Select Hugging Face Model",
|
| 196 |
interactive=True
|
| 197 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
with gr.Column() as hf_container:
|
| 200 |
+
hf_interface = create_interface(hf_model.value, "models")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
hf_model.change(
|
| 203 |
+
fn=lambda new_model: update_model(new_model, hf_container, "models"),
|
| 204 |
inputs=[hf_model],
|
| 205 |
+
outputs=[]
|
| 206 |
)
|
| 207 |
|
| 208 |
gr.Markdown("""
|
| 209 |
**Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
""")
|
| 211 |
+
|
| 212 |
+
# Groq Tab
|
| 213 |
with gr.Tab("Groq"):
|
| 214 |
with gr.Row():
|
| 215 |
groq_model = gr.Dropdown(
|
|
|
|
| 224 |
'gemma2-9b-it',
|
| 225 |
'gemma-7b-it'
|
| 226 |
],
|
| 227 |
+
value='llama3-groq-70b-8192-tool-use-preview',
|
| 228 |
label="Select Groq Model",
|
| 229 |
interactive=True
|
| 230 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
with gr.Column() as groq_container:
|
| 233 |
+
groq_interface = create_interface(groq_model.value, groq_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
groq_model.change(
|
| 236 |
+
fn=lambda new_model: update_model(new_model, groq_container, groq_gradio.registry),
|
| 237 |
inputs=[groq_model],
|
| 238 |
+
outputs=[]
|
| 239 |
)
|
| 240 |
+
|
| 241 |
+
# Hyperbolic Tab
|
|
|
|
|
|
|
| 242 |
with gr.Tab("Hyperbolic"):
|
| 243 |
with gr.Row():
|
| 244 |
hyperbolic_model = gr.Dropdown(
|
| 245 |
choices=[
|
| 246 |
+
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 247 |
+
'meta-llama/Llama-3.2-3B-Instruct',
|
| 248 |
+
'meta-llama/Meta-Llama-3.1-8B-Instruct',
|
| 249 |
+
'meta-llama/Meta-Llama-3.1-70B-Instruct',
|
| 250 |
+
'meta-llama/Meta-Llama-3-70B-Instruct',
|
| 251 |
+
'NousResearch/Hermes-3-Llama-3.1-70B',
|
| 252 |
+
'Qwen/Qwen2.5-72B-Instruct',
|
| 253 |
+
'deepseek-ai/DeepSeek-V2.5',
|
| 254 |
+
'meta-llama/Meta-Llama-3.1-405B-Instruct'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
],
|
| 256 |
value='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 257 |
label="Select Hyperbolic Model",
|
| 258 |
interactive=True
|
| 259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
with gr.Column() as hyperbolic_container:
|
| 262 |
+
hyperbolic_interface = create_interface(hyperbolic_model.value, hyperbolic_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
hyperbolic_model.change(
|
| 265 |
+
fn=lambda new_model: update_model(new_model, hyperbolic_container, hyperbolic_gradio.registry),
|
| 266 |
inputs=[hyperbolic_model],
|
| 267 |
+
outputs=[]
|
| 268 |
)
|
| 269 |
+
|
| 270 |
+
# Qwen Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
with gr.Tab("Qwen"):
|
| 272 |
with gr.Row():
|
| 273 |
qwen_model = gr.Dropdown(
|
| 274 |
choices=[
|
|
|
|
| 275 |
'qwen-turbo-latest',
|
| 276 |
'qwen-turbo',
|
| 277 |
'qwen-plus',
|
| 278 |
'qwen-max',
|
|
|
|
| 279 |
'qwen1.5-110b-chat',
|
| 280 |
'qwen1.5-72b-chat',
|
| 281 |
'qwen1.5-32b-chat',
|
| 282 |
'qwen1.5-14b-chat',
|
| 283 |
'qwen1.5-7b-chat'
|
| 284 |
],
|
| 285 |
+
value='qwen-turbo-latest',
|
| 286 |
label="Select Qwen Model",
|
| 287 |
interactive=True
|
| 288 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
with gr.Column() as qwen_container:
|
| 291 |
+
qwen_interface = create_interface(qwen_model.value, dashscope_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
qwen_model.change(
|
| 294 |
+
fn=lambda new_model: update_model(new_model, qwen_container, dashscope_gradio.registry),
|
| 295 |
inputs=[qwen_model],
|
| 296 |
+
outputs=[]
|
| 297 |
)
|
| 298 |
+
|
| 299 |
+
# Perplexity Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
with gr.Tab("Perplexity"):
|
| 301 |
with gr.Row():
|
| 302 |
perplexity_model = gr.Dropdown(
|
| 303 |
choices=[
|
| 304 |
+
'llama-3.1-sonar-small-128k-online',
|
| 305 |
+
'llama-3.1-sonar-large-128k-online',
|
| 306 |
+
'llama-3.1-sonar-huge-128k-online',
|
| 307 |
+
'llama-3.1-sonar-small-128k-chat',
|
| 308 |
+
'llama-3.1-sonar-large-128k-chat',
|
| 309 |
+
'llama-3.1-8b-instruct',
|
| 310 |
+
'llama-3.1-70b-instruct'
|
|
|
|
|
|
|
|
|
|
| 311 |
],
|
| 312 |
+
value='llama-3.1-sonar-large-128k-online',
|
| 313 |
label="Select Perplexity Model",
|
| 314 |
interactive=True
|
| 315 |
)
|
| 316 |
|
| 317 |
+
with gr.Column() as perplexity_container:
|
| 318 |
+
perplexity_interface = create_interface(perplexity_model.value, perplexity_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
perplexity_model.change(
|
| 321 |
+
fn=lambda new_model: update_model(new_model, perplexity_container, perplexity_gradio.registry, accept_token=True),
|
| 322 |
inputs=[perplexity_model],
|
| 323 |
+
outputs=[]
|
| 324 |
)
|
| 325 |
+
|
| 326 |
+
# Mistral Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
with gr.Tab("Mistral"):
|
| 328 |
with gr.Row():
|
| 329 |
mistral_model = gr.Dropdown(
|
| 330 |
choices=[
|
| 331 |
+
'mistral-large-latest',
|
| 332 |
+
'pixtral-large-latest',
|
| 333 |
+
'ministral-3b-latest',
|
| 334 |
+
'ministral-8b-latest',
|
| 335 |
+
'mistral-small-latest',
|
| 336 |
+
'codestral-latest',
|
| 337 |
+
'mistral-embed',
|
| 338 |
+
'mistral-moderation-latest',
|
| 339 |
+
'pixtral-12b-2409',
|
| 340 |
+
'open-mistral-nemo',
|
| 341 |
+
'open-codestral-mamba'
|
|
|
|
|
|
|
| 342 |
],
|
| 343 |
+
value='pixtral-large-latest',
|
| 344 |
label="Select Mistral Model",
|
| 345 |
interactive=True
|
| 346 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
with gr.Column() as mistral_container:
|
| 349 |
+
mistral_interface = create_interface(mistral_model.value, mistral_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
mistral_model.change(
|
| 352 |
+
fn=lambda new_model: update_model(new_model, mistral_container, mistral_gradio.registry),
|
| 353 |
inputs=[mistral_model],
|
| 354 |
+
outputs=[]
|
| 355 |
)
|
| 356 |
+
|
| 357 |
+
# Fireworks Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
with gr.Tab("Fireworks"):
|
| 359 |
with gr.Row():
|
| 360 |
fireworks_model = gr.Dropdown(
|
| 361 |
choices=[
|
| 362 |
+
'f1-preview',
|
| 363 |
+
'f1-mini-preview'
|
| 364 |
],
|
| 365 |
+
value='f1-preview',
|
| 366 |
label="Select Fireworks Model",
|
| 367 |
interactive=True
|
| 368 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
+
with gr.Column() as fireworks_container:
|
| 371 |
+
fireworks_interface = create_interface(fireworks_model.value, fireworks_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
fireworks_model.change(
|
| 374 |
+
fn=lambda new_model: update_model(new_model, fireworks_container, fireworks_gradio.registry),
|
| 375 |
inputs=[fireworks_model],
|
| 376 |
+
outputs=[]
|
| 377 |
)
|
| 378 |
+
|
| 379 |
+
# Cerebras Tab
|
|
|
|
|
|
|
| 380 |
with gr.Tab("Cerebras"):
|
| 381 |
with gr.Row():
|
| 382 |
cerebras_model = gr.Dropdown(
|
|
|
|
| 385 |
'llama3.1-70b',
|
| 386 |
'llama3.1-405b'
|
| 387 |
],
|
| 388 |
+
value='llama3.1-70b',
|
| 389 |
label="Select Cerebras Model",
|
| 390 |
interactive=True
|
| 391 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
+
with gr.Column() as cerebras_container:
|
| 394 |
+
cerebras_interface = create_interface(cerebras_model.value, cerebras_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
cerebras_model.change(
|
| 397 |
+
fn=lambda new_model: update_model(new_model, cerebras_container, cerebras_gradio.registry, accept_token=True),
|
| 398 |
inputs=[cerebras_model],
|
| 399 |
+
outputs=[]
|
| 400 |
)
|
| 401 |
+
|
| 402 |
+
# Together Tab
|
| 403 |
with gr.Tab("Together"):
|
| 404 |
with gr.Row():
|
| 405 |
together_model = gr.Dropdown(
|
| 406 |
choices=[
|
| 407 |
+
'meta-llama/Llama-Vision-Free',
|
| 408 |
+
'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
| 409 |
+
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
|
| 410 |
+
'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',
|
| 411 |
+
'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',
|
| 412 |
+
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
|
| 413 |
+
'meta-llama/Meta-Llama-3-8B-Instruct-Turbo',
|
| 414 |
+
'meta-llama/Meta-Llama-3-70B-Instruct-Turbo',
|
| 415 |
+
'meta-llama/Llama-3.2-3B-Instruct-Turbo',
|
| 416 |
+
'meta-llama/Meta-Llama-3-8B-Instruct-Lite',
|
| 417 |
+
'meta-llama/Meta-Llama-3-70B-Instruct-Lite',
|
| 418 |
+
'meta-llama/Llama-3-8b-chat-hf',
|
| 419 |
+
'meta-llama/Llama-3-70b-chat-hf',
|
| 420 |
+
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
|
| 421 |
+
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 422 |
+
'microsoft/WizardLM-2-8x22B',
|
| 423 |
+
'google/gemma-2-27b-it',
|
| 424 |
+
'google/gemma-2-9b-it',
|
| 425 |
+
'databricks/dbrx-instruct',
|
| 426 |
+
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
| 427 |
+
'mistralai/Mixtral-8x22B-Instruct-v0.1',
|
| 428 |
+
'Qwen/Qwen2.5-7B-Instruct-Turbo',
|
| 429 |
+
'Qwen/Qwen2.5-72B-Instruct-Turbo',
|
| 430 |
+
'Qwen/Qwen2-72B-Instruct',
|
| 431 |
+
'deepseek-ai/deepseek-llm-67b-chat',
|
| 432 |
+
'google/gemma-2b-it',
|
| 433 |
+
'Gryphe/MythoMax-L2-13b',
|
| 434 |
+
'meta-llama/Llama-2-13b-chat-hf',
|
| 435 |
+
'mistralai/Mistral-7B-Instruct-v0.1',
|
| 436 |
+
'mistralai/Mistral-7B-Instruct-v0.2',
|
| 437 |
+
'mistralai/Mistral-7B-Instruct-v0.3',
|
| 438 |
+
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
|
| 439 |
+
'togethercomputer/StripedHyena-Nous-7B',
|
| 440 |
+
'upstage/SOLAR-10.7B-Instruct-v1.0'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
],
|
| 442 |
+
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
| 443 |
label="Select Together Model",
|
| 444 |
interactive=True
|
| 445 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
+
with gr.Column() as together_container:
|
| 448 |
+
together_interface = create_interface(together_model.value, together_gradio.registry, multimodal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
together_model.change(
|
| 451 |
+
fn=lambda new_model: update_model(new_model, together_container, together_gradio.registry, multimodal=True),
|
| 452 |
inputs=[together_model],
|
| 453 |
+
outputs=[]
|
| 454 |
)
|
| 455 |
+
|
| 456 |
+
# NVIDIA Tab
|
|
|
|
|
|
|
| 457 |
with gr.Tab("NVIDIA"):
|
| 458 |
with gr.Row():
|
| 459 |
nvidia_model = gr.Dropdown(
|
| 460 |
choices=[
|
|
|
|
| 461 |
'nvidia/llama3-chatqa-1.5-70b',
|
| 462 |
'nvidia/llama3-chatqa-1.5-8b',
|
| 463 |
'nvidia-nemotron-4-340b-instruct',
|
| 464 |
+
'meta/llama-3.1-70b-instruct',
|
|
|
|
| 465 |
'meta/codellama-70b',
|
| 466 |
'meta/llama2-70b',
|
| 467 |
'meta/llama3-8b',
|
| 468 |
'meta/llama3-70b',
|
|
|
|
| 469 |
'mistralai/codestral-22b-instruct-v0.1',
|
| 470 |
'mistralai/mathstral-7b-v0.1',
|
| 471 |
'mistralai/mistral-large-2-instruct',
|
|
|
|
| 474 |
'mistralai/mixtral-8x7b-instruct',
|
| 475 |
'mistralai/mixtral-8x22b-instruct',
|
| 476 |
'mistralai/mistral-large',
|
|
|
|
| 477 |
'google/gemma-2b',
|
| 478 |
'google/gemma-7b',
|
| 479 |
'google/gemma-2-2b-it',
|
|
|
|
| 483 |
'google/codegemma-7b',
|
| 484 |
'google/recurrentgemma-2b',
|
| 485 |
'google/shieldgemma-9b',
|
|
|
|
| 486 |
'microsoft/phi-3-medium-128k-instruct',
|
| 487 |
'microsoft/phi-3-medium-4k-instruct',
|
| 488 |
'microsoft/phi-3-mini-128k-instruct',
|
| 489 |
'microsoft/phi-3-mini-4k-instruct',
|
| 490 |
'microsoft/phi-3-small-128k-instruct',
|
| 491 |
'microsoft/phi-3-small-8k-instruct',
|
|
|
|
| 492 |
'qwen/qwen2-7b-instruct',
|
| 493 |
'databricks/dbrx-instruct',
|
| 494 |
'deepseek-ai/deepseek-coder-6.7b-instruct',
|
| 495 |
'upstage/solar-10.7b-instruct',
|
| 496 |
'snowflake/arctic'
|
| 497 |
],
|
| 498 |
+
value='meta/llama-3.1-70b-instruct',
|
| 499 |
label="Select NVIDIA Model",
|
| 500 |
interactive=True
|
| 501 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
+
with gr.Column() as nvidia_container:
|
| 504 |
+
nvidia_interface = create_interface(nvidia_model.value, nvidia_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
|
| 506 |
nvidia_model.change(
|
| 507 |
+
fn=lambda new_model: update_model(new_model, nvidia_container, nvidia_gradio.registry, accept_token=True),
|
| 508 |
inputs=[nvidia_model],
|
| 509 |
+
outputs=[]
|
| 510 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
demo.launch(ssr_mode=False)
|
| 513 |
|