This view is limited to 50 files because it contains too many changes.  See the raw diff here.
.gitattributes CHANGED
@@ -1 +1,35 @@
1
- Animated_Logo_Video_Ready.gif filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore CHANGED
@@ -1,3 +1,5 @@
 
 
1
  # Byte-compiled / optimized / DLL files
2
  __pycache__/
3
  *.py[cod]
@@ -19,18 +21,16 @@ lib64/
19
  parts/
20
  sdist/
21
  var/
 
 
22
  *.egg-info/
23
  .installed.cfg
24
  *.egg
25
  MANIFEST
26
 
27
- # Virtual environments
28
- venv/
29
- env/
30
- ENV/
31
- .venv/
32
-
33
  # PyInstaller
 
 
34
  *.manifest
35
  *.spec
36
 
@@ -48,34 +48,115 @@ htmlcov/
48
  nosetests.xml
49
  coverage.xml
50
  *.cover
 
51
  .hypothesis/
52
  .pytest_cache/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  # Jupyter Notebook
55
  .ipynb_checkpoints
56
 
 
 
 
 
57
  # pyenv
58
- .python-version
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  # mypy
61
  .mypy_cache/
62
  .dmypy.json
 
63
 
64
  # Pyre type checker
65
  .pyre/
66
 
67
- # Gradio cache
68
- log/
69
- logs/
70
-
71
- # System files
72
- .DS_Store
73
- Thumbs.db
74
 
75
- # Lock files
76
- uv.lock
77
- poetry.lock
78
- Pipfile.lock
79
 
80
- # VSCode
81
- .vscode/
 
 
 
 
 
1
+ .gradio/
2
+
3
  # Byte-compiled / optimized / DLL files
4
  __pycache__/
5
  *.py[cod]
 
21
  parts/
22
  sdist/
23
  var/
24
+ wheels/
25
+ share/python-wheels/
26
  *.egg-info/
27
  .installed.cfg
28
  *.egg
29
  MANIFEST
30
 
 
 
 
 
 
 
31
  # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
  *.manifest
35
  *.spec
36
 
 
48
  nosetests.xml
49
  coverage.xml
50
  *.cover
51
+ *.py,cover
52
  .hypothesis/
53
  .pytest_cache/
54
+ cover/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ .pybuilder/
78
+ target/
79
 
80
  # Jupyter Notebook
81
  .ipynb_checkpoints
82
 
83
+ # IPython
84
+ profile_default/
85
+ ipython_config.py
86
+
87
  # pyenv
88
+ # For a library or package, you might want to ignore these files since the code is
89
+ # intended to run in multiple environments; otherwise, check them in:
90
+ # .python-version
91
+
92
+ # pipenv
93
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
95
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
96
+ # install all needed dependencies.
97
+ #Pipfile.lock
98
+
99
+ # poetry
100
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
101
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
102
+ # commonly ignored for libraries.
103
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
104
+ #poetry.lock
105
+
106
+ # pdm
107
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
108
+ #pdm.lock
109
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
110
+ # in version control.
111
+ # https://pdm.fming.dev/#use-with-ide
112
+ .pdm.toml
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
 
143
  # mypy
144
  .mypy_cache/
145
  .dmypy.json
146
+ dmypy.json
147
 
148
  # Pyre type checker
149
  .pyre/
150
 
151
+ # pytype static type analyzer
152
+ .pytype/
 
 
 
 
 
153
 
154
+ # Cython debug symbols
155
+ cython_debug/
 
 
156
 
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v5.0.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/astral-sh/ruff-pre-commit
17
+ rev: v0.8.6
18
+ hooks:
19
+ - id: ruff
20
+ args: ["--fix"]
21
+ - repo: https://github.com/pre-commit/mirrors-mypy
22
+ rev: v1.14.1
23
+ hooks:
24
+ - id: mypy
25
+ args: ["--ignore-missing-imports"]
26
+ additional_dependencies:
27
+ [
28
+ "types-python-slugify",
29
+ "types-requests",
30
+ "types-PyYAML",
31
+ "types-pytz",
32
+ ]
.python-version ADDED
@@ -0,0 +1 @@
 
 
1
+ 3.10
.vscode/extensions.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "recommendations": [
3
+ "ms-python.python",
4
+ "charliermarsh.ruff",
5
+ "streetsidesoftware.code-spell-checker",
6
+ "tamasfe.even-better-toml"
7
+ ]
8
+ }
.vscode/settings.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "charliermarsh.ruff",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.fixAll.ruff": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "notebook.output.scrolling": true,
15
+ "notebook.formatOnSave.enabled": true
16
+ }
README.md CHANGED
@@ -1,143 +1,13 @@
1
  ---
2
  title: Anycoder
3
- emoji: 🔥
4
  colorFrom: indigo
5
  colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 5.49.1
8
  app_file: app.py
9
  pinned: false
10
  disable_embedding: true
11
- hf_oauth: true
12
- hf_oauth_scopes:
13
- - manage-repos
14
  ---
15
 
16
- # AnyCoder - AI Code Generator
17
-
18
- AnyCoder is an AI-powered code generator that helps you create applications by describing them in plain English. It supports multiple AI models, multimodal input, website redesign, and one-click deployment to Hugging Face Spaces. The UI is built with Gradio theming for a minimal, modern experience.
19
-
20
- ## Features
21
-
22
- - **Multi-Model Support**: Choose from Moonshot Kimi-K2, Kimi K2 Turbo (Preview), Kimi K2 Thinking, DeepSeek V3, DeepSeek R1, ERNIE-4.5-VL, MiniMax M2, Qwen3-235B-A22B, Qwen3-30B-A3B-Instruct-2507, Qwen3-30B-A3B-Thinking-2507, SmolLM3-3B, GLM-4.1V-9B-Thinking, Gemini 2.5 Flash and Gemini 2.5 Pro (OpenAI-compatible)
23
- - Claude-Opus-4.1 (via Poe)
24
- - **Flexible Input**: Describe your app in text, upload a UI design image (for multimodal models), provide a reference file (PDF, TXT, MD, CSV, DOCX, or image), or enter a website URL for redesign
25
- - **Web Search Integration**: Enable real-time web search (Tavily, with advanced search depth) to enhance code generation with up-to-date information and best practices
26
- - **Code Generation**: Generate code in HTML, Python, JS, and more. Special support for transformers.js apps (outputs index.html, index.js, style.css)
27
- - **Live Preview**: Instantly preview generated HTML in a sandboxed iframe
28
- - **Modify Existing Code**: Use search/replace block format to update generated HTML
29
- - **One-Click Deployment**: Deploy your app to Hugging Face Spaces (Gradio, Streamlit, Static HTML, or Transformers.js) with OAuth login
30
- - **History & Examples**: Chat-like history of all interactions and quick example prompts for fast prototyping
31
- - **Minimal, Modern UI**: Built with Gradio 5.x, using only built-in theming and styling (no custom CSS)
32
-
33
- ## Installation
34
-
35
- 1. Clone the repository:
36
- ```bash
37
- git clone <repository-url>
38
- cd anycoder
39
- ```
40
- 2. Install dependencies:
41
- ```bash
42
- pip install -r requirements.txt
43
- ```
44
- 3. Set up environment variables:
45
- ```bash
46
- export HF_TOKEN="your_huggingface_token"
47
- export DASHSCOPE_API_KEY="your_dashscope_api_key" # Required for Qwen3-30B models via DashScope
48
- export POE_API_KEY="your_poe_api_key" # Required for GPT-5, Grok-4, and Grok-Code-Fast-1 via Poe
49
- export GEMINI_API_KEY="your_gemini_api_key" # Required for Gemini models
50
- export MOONSHOT_API_KEY="your_moonshot_api_key" # Required for Kimi models
51
- export MINIMAX_API_KEY="your_minimax_api_key" # Required for MiniMax M2 model
52
- ```
53
-
54
- ## Usage
55
-
56
- 1. Run the application:
57
- ```bash
58
- python app.py
59
- ```
60
- 2. Open your browser and navigate to the provided URL
61
- 3. Describe your application in the text input field, or:
62
- - Upload a UI design image (for multimodal models)
63
- - Upload a reference file (PDF, TXT, MD, CSV, DOCX, or image)
64
- - Enter a website URL for redesign (the app will extract and analyze the HTML and content)
65
- - Enable web search for up-to-date information
66
- - Choose a different AI model or code language
67
- 4. Click "Generate" to create your code
68
- 5. View the generated code in the Code tab or see it in action in the Preview tab
69
- 6. Use the History tab to review previous generations
70
- 7. **Deploy to Space**: Enter a title and click "🚀 Deploy App" to publish your application (OAuth login required) - the SDK is automatically matched to your selected code language
71
-
72
- ## Supported Models
73
-
74
- - Moonshot Kimi-K2
75
- - Kimi K2 Turbo (Preview)
76
- - Kimi K2 Thinking
77
- - DeepSeek V3
78
- - DeepSeek V3.1
79
- - DeepSeek V3.1 Terminus
80
- - DeepSeek V3.2-Exp
81
- - DeepSeek R1
82
- - MiniMax M2
83
- - Qwen3-235B-A22B
84
- - Qwen3-4B-Instruct-2507
85
- - Qwen3-4B-Thinking-2507
86
- - Qwen3-30B-A3B-Instruct-2507 (via DashScope)
87
- - Qwen3-30B-A3B-Thinking-2507 (via DashScope)
88
- - GPT-5 (via Poe)
89
- - Grok-4 (via Poe)
90
- - Claude-Opus-4.1 (via Poe)
91
- - Gemini 2.5 Flash (OpenAI-compatible)
92
- - Gemini 2.5 Pro (OpenAI-compatible)
93
-
94
- ## Input Options
95
-
96
- - **Text Prompt**: Describe your app or code requirements
97
- - **Image Upload**: For multimodal models, upload a UI design image to generate code from visuals
98
- - **File Upload**: Provide a reference file (PDF, TXT, MD, CSV, DOCX, or image) for code generation or text extraction (OCR for images)
99
- - **Website URL**: Enter a URL to extract and redesign the website (HTML and content are analyzed and modernized)
100
-
101
- ## Code Generation & Modification
102
-
103
- - Generates code in HTML, Python, JS, and more (selectable via dropdown)
104
- - Special support for transformers.js apps (outputs index.html, index.js, style.css)
105
- - Svelte apps
106
- - For HTML, provides a live preview in a sandboxed iframe
107
- - For modification requests, uses a search/replace block format to update existing HTML
108
-
109
- ## Deployment
110
-
111
- - Deploy generated apps to Hugging Face Spaces directly from the UI
112
- - Supported SDKs: Gradio (Python), Streamlit (Python), Static (HTML), Transformers.js
113
- - OAuth login with Hugging Face is required for deployment to user-owned Spaces
114
-
115
- ## History & Examples
116
-
117
- - Maintains a chat-like history of user/assistant interactions
118
- - Quick example prompts are available in the sidebar for fast prototyping
119
-
120
- ## UI/UX
121
-
122
- - Built with Gradio 5.x, using only Gradio's built-in theming and styling (no custom CSS)
123
- - Minimal, uncluttered sidebar and interface
124
-
125
- ## Environment Variables
126
-
127
- - `HF_TOKEN`: Your Hugging Face API token (required)
128
- - `GEMINI_API_KEY`: Your Google Gemini API key (required to use Gemini models)
129
- - `MOONSHOT_API_KEY`: Your Moonshot AI API key (required to use Kimi models)
130
- - `MINIMAX_API_KEY`: Your MiniMax API key (required to use MiniMax M2 model)
131
-
132
- ## Project Structure
133
-
134
- ```
135
- anycoder/
136
- ├── app.py # Main application (all logic and UI)
137
- ├── requirements.txt
138
- ├── README.md # This file
139
- ```
140
-
141
- ## License
142
-
143
- [Add your license information here]
 
1
  ---
2
  title: Anycoder
3
+ emoji: 🏢
4
  colorFrom: indigo
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 5.23.3
8
  app_file: app.py
9
  pinned: false
10
  disable_embedding: true
 
 
 
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/__init__.py DELETED
@@ -1,27 +0,0 @@
1
- """
2
- AnyCoder - AI Code Generator Package
3
- Modular structure for better code organization and maintainability.
4
- """
5
-
6
- __version__ = "1.0.0"
7
-
8
- from . import config
9
- from . import prompts
10
- from . import docs_manager
11
- from . import models
12
- from . import parsers
13
- from . import deploy
14
- from . import themes
15
- from . import ui
16
-
17
- __all__ = [
18
- "config",
19
- "prompts",
20
- "docs_manager",
21
- "models",
22
- "parsers",
23
- "deploy",
24
- "themes",
25
- "ui",
26
- ]
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/agent.py DELETED
@@ -1,234 +0,0 @@
1
- """
2
- Agent functionality for interactive code generation with follow-up questions and task planning.
3
- """
4
- import os
5
- from typing import Dict, List, Optional, Tuple, Generator
6
- import gradio as gr
7
-
8
- from .models import (
9
- get_inference_client, get_real_model_id, history_to_messages,
10
- history_to_chatbot_messages, strip_thinking_tags
11
- )
12
- from .deploy import generation_code
13
-
14
-
15
- def agent_generate_with_questions(
16
- query: Optional[str],
17
- setting: Dict[str, str],
18
- history: List,
19
- current_model: Dict,
20
- language: str,
21
- provider: str,
22
- profile: Optional[gr.OAuthProfile] = None,
23
- token: Optional[gr.OAuthToken] = None,
24
- max_questions: int = 3
25
- ) -> Generator[Tuple[List, List], None, None]:
26
- """
27
- Agent that asks follow-up questions, creates a task list, and generates code.
28
-
29
- Args:
30
- query: Initial user request
31
- setting: System settings
32
- history: Conversation history
33
- current_model: Selected model configuration
34
- language: Target programming language/framework
35
- provider: Model provider
36
- profile: User OAuth profile
37
- token: User OAuth token
38
- max_questions: Maximum number of follow-up questions to ask
39
-
40
- Yields:
41
- Tuples of (history, chatbot_messages) at each step
42
- """
43
- if not query or not query.strip():
44
- return
45
-
46
- # Initialize history with user's initial query
47
- current_history = history + [[query, ""]]
48
-
49
- # Step 1: Agent analyzes the request and asks follow-up questions
50
- agent_system_prompt = """You are a helpful coding assistant that helps users clarify their requirements before generating code.
51
-
52
- Your task is to:
53
- 1. Analyze the user's request
54
- 2. Ask 1-3 clarifying questions to better understand their needs
55
- 3. Focus on important details like:
56
- - Target audience and use case
57
- - Specific features or functionality needed
58
- - Design preferences (colors, layout, style)
59
- - Data sources or APIs to integrate
60
- - Performance or scalability requirements
61
-
62
- Output ONLY the questions, numbered 1, 2, 3, etc. Keep questions concise and focused.
63
- Do not generate code yet - just ask the questions."""
64
-
65
- # Get LLM client
66
- client = get_inference_client(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'), provider)
67
- model_id = get_real_model_id(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'))
68
-
69
- # Prepare messages for follow-up questions
70
- messages = [
71
- {'role': 'system', 'content': agent_system_prompt},
72
- {'role': 'user', 'content': f"User wants to create: {query}\n\nLanguage/Framework: {language}\n\nAsk clarifying questions."}
73
- ]
74
-
75
- # Generate follow-up questions
76
- questions_response = ""
77
- try:
78
- # Try to use the client (works for both InferenceClient and OpenAI-compatible clients)
79
- stream = client.chat.completions.create(
80
- model=model_id,
81
- messages=messages,
82
- temperature=0.7,
83
- max_tokens=500,
84
- stream=True
85
- )
86
- for chunk in stream:
87
- if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content:
88
- questions_response += chunk.choices[0].delta.content
89
- # Update display in real-time
90
- temp_history = current_history[:-1] + [[query, f"🤔 **Analyzing your request...**\n\n{questions_response}"]]
91
- yield (temp_history, history_to_chatbot_messages(temp_history))
92
- except Exception as e:
93
- error_msg = f"❌ Error asking follow-up questions: {str(e)}"
94
- temp_history = current_history[:-1] + [[query, error_msg]]
95
- yield (temp_history, history_to_chatbot_messages(temp_history))
96
- return
97
-
98
- # Update history with agent's questions
99
- current_history[-1][1] = f"🤔 **Let me ask you a few questions to better understand your needs:**\n\n{questions_response}\n\n💬 Please answer these questions in your next message."
100
- yield (current_history, history_to_chatbot_messages(current_history))
101
-
102
- # Wait for user response (this will be handled by the UI)
103
- # For now, we'll return and let the user respond, then continue in the next call
104
- return
105
-
106
-
107
- def agent_process_answers_and_generate(
108
- user_answers: str,
109
- original_query: str,
110
- questions: str,
111
- setting: Dict[str, str],
112
- history: List,
113
- current_model: Dict,
114
- language: str,
115
- provider: str,
116
- profile: Optional[gr.OAuthProfile] = None,
117
- token: Optional[gr.OAuthToken] = None,
118
- code_output=None,
119
- history_output=None,
120
- history_state=None
121
- ) -> Generator:
122
- """
123
- Process user's answers, create task list, and generate code.
124
-
125
- Args:
126
- user_answers: User's responses to the questions
127
- original_query: Original user request
128
- questions: Agent's questions
129
- setting: System settings
130
- history: Conversation history
131
- current_model: Selected model configuration
132
- language: Target programming language/framework
133
- provider: Model provider
134
- profile: User OAuth profile
135
- token: User OAuth token
136
- code_output: Code output component
137
- history_output: History output component
138
- history_state: History state
139
-
140
- Yields:
141
- Updates to code output and history
142
- """
143
- # Step 2: Create task list based on answers
144
- task_planning_prompt = f"""Based on the user's request and their answers, create a detailed task list for implementing the solution.
145
-
146
- Original Request: {original_query}
147
-
148
- Questions Asked:
149
- {questions}
150
-
151
- User's Answers:
152
- {user_answers}
153
-
154
- Create a numbered task list with 5-8 specific, actionable tasks. Each task should be clear and focused.
155
- Start with "📋 **Task List:**" and then list the tasks."""
156
-
157
- client = get_inference_client(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'), provider)
158
- model_id = get_real_model_id(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'))
159
-
160
- messages = [
161
- {'role': 'system', 'content': 'You are a helpful coding assistant creating a task plan.'},
162
- {'role': 'user', 'content': task_planning_prompt}
163
- ]
164
-
165
- # Generate task list
166
- task_list = ""
167
- try:
168
- stream = client.chat.completions.create(
169
- model=model_id,
170
- messages=messages,
171
- temperature=0.7,
172
- max_tokens=800,
173
- stream=True
174
- )
175
- for chunk in stream:
176
- if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content:
177
- task_list += chunk.choices[0].delta.content
178
- # Update display
179
- temp_history = history + [[user_answers, f"📋 **Creating task list...**\n\n{task_list}"]]
180
- yield {
181
- history_state: temp_history,
182
- history_output: history_to_chatbot_messages(temp_history)
183
- }
184
- except Exception as e:
185
- error_msg = f"❌ Error creating task list: {str(e)}"
186
- temp_history = history + [[user_answers, error_msg]]
187
- yield {
188
- history_state: temp_history,
189
- history_output: history_to_chatbot_messages(temp_history)
190
- }
191
- return
192
-
193
- # Update history with task list
194
- updated_history = history + [[user_answers, task_list]]
195
- yield {
196
- history_state: updated_history,
197
- history_output: history_to_chatbot_messages(updated_history)
198
- }
199
-
200
- # Step 3: Generate code based on refined requirements
201
- refined_query = f"""{original_query}
202
-
203
- Additional Requirements (based on follow-up):
204
- {user_answers}
205
-
206
- Task List:
207
- {task_list}
208
-
209
- Please implement the above requirements following the task list."""
210
-
211
- # Add a message indicating code generation is starting
212
- code_gen_start_history = updated_history + [["[System]", "🚀 **Starting code generation based on your requirements...**"]]
213
- yield {
214
- history_state: code_gen_start_history,
215
- history_output: history_to_chatbot_messages(code_gen_start_history)
216
- }
217
-
218
- # Use the existing generation_code function for actual code generation
219
- # We need to pass the refined query and updated history
220
- for result in generation_code(
221
- refined_query,
222
- setting,
223
- updated_history,
224
- current_model,
225
- language,
226
- provider,
227
- profile,
228
- token,
229
- code_output,
230
- history_output,
231
- history_state
232
- ):
233
- yield result
234
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/config.py DELETED
@@ -1,175 +0,0 @@
1
- """
2
- Configuration constants for AnyCoder application.
3
- """
4
- import os
5
- from datetime import datetime
6
- from typing import Optional
7
-
8
- # Gradio supported languages for syntax highlighting
9
- GRADIO_SUPPORTED_LANGUAGES = [
10
- "python", "json", "html", "javascript"
11
- ]
12
-
13
- # Search/Replace Constants
14
- SEARCH_START = "<<<<<<< SEARCH"
15
- DIVIDER = "======="
16
- REPLACE_END = ">>>>>>> REPLACE"
17
-
18
- # Gradio Documentation Auto-Update System
19
- GRADIO_LLMS_TXT_URL = "https://www.gradio.app/llms.txt"
20
- GRADIO_DOCS_CACHE_FILE = ".gradio_docs_cache.txt"
21
- GRADIO_DOCS_LAST_UPDATE_FILE = ".gradio_docs_last_update.txt"
22
- GRADIO_DOCS_UPDATE_ON_APP_UPDATE = True # Only update when app is updated, not on a timer
23
-
24
- # Global variable to store the current Gradio documentation
25
- _gradio_docs_content: Optional[str] = None
26
- _gradio_docs_last_fetched: Optional[datetime] = None
27
-
28
- # ComfyUI Documentation Auto-Update System
29
- COMFYUI_LLMS_TXT_URL = "https://docs.comfy.org/llms.txt"
30
- COMFYUI_DOCS_CACHE_FILE = ".comfyui_docs_cache.txt"
31
- COMFYUI_DOCS_LAST_UPDATE_FILE = ".comfyui_docs_last_update.txt"
32
- COMFYUI_DOCS_UPDATE_ON_APP_UPDATE = True # Only update when app is updated, not on a timer
33
-
34
- # Global variable to store the current ComfyUI documentation
35
- _comfyui_docs_content: Optional[str] = None
36
- _comfyui_docs_last_fetched: Optional[datetime] = None
37
-
38
- # FastRTC Documentation Auto-Update System
39
- FASTRTC_LLMS_TXT_URL = "https://fastrtc.org/llms.txt"
40
- FASTRTC_DOCS_CACHE_FILE = ".fastrtc_docs_cache.txt"
41
- FASTRTC_DOCS_LAST_UPDATE_FILE = ".fastrtc_docs_last_update.txt"
42
- FASTRTC_DOCS_UPDATE_ON_APP_UPDATE = True # Only update when app is updated, not on a timer
43
-
44
- # Global variable to store the current FastRTC documentation
45
- _fastrtc_docs_content: Optional[str] = None
46
- _fastrtc_docs_last_fetched: Optional[datetime] = None
47
-
48
- # Available Models Configuration
49
- AVAILABLE_MODELS = [
50
- {
51
- "name": "DeepSeek V3.2-Exp",
52
- "id": "deepseek-ai/DeepSeek-V3.2-Exp",
53
- "description": "DeepSeek V3.2 Experimental model for cutting-edge code generation and reasoning"
54
- },
55
- {
56
- "name": "DeepSeek R1",
57
- "id": "deepseek-ai/DeepSeek-R1-0528",
58
- "description": "DeepSeek R1 model for code generation"
59
- },
60
- {
61
- "name": "GLM-4.6",
62
- "id": "zai-org/GLM-4.6",
63
- "description": "GLM-4.6 model for advanced code generation and general tasks"
64
- },
65
- {
66
- "name": "Gemini Flash Latest",
67
- "id": "gemini-flash-latest",
68
- "description": "Google Gemini Flash Latest model via native Gemini API"
69
- },
70
- {
71
- "name": "Gemini Flash Lite Latest",
72
- "id": "gemini-flash-lite-latest",
73
- "description": "Google Gemini Flash Lite Latest model via OpenAI-compatible API"
74
- },
75
- {
76
- "name": "GPT-5",
77
- "id": "gpt-5",
78
- "description": "OpenAI GPT-5 model for advanced code generation and general tasks"
79
- },
80
- {
81
- "name": "GPT-5.1",
82
- "id": "gpt-5.1",
83
- "description": "OpenAI GPT-5.1 model via Poe for advanced code generation and general tasks"
84
- },
85
- {
86
- "name": "GPT-5.1 Instant",
87
- "id": "gpt-5.1-instant",
88
- "description": "OpenAI GPT-5.1 Instant model via Poe for fast responses"
89
- },
90
- {
91
- "name": "GPT-5.1 Codex",
92
- "id": "gpt-5.1-codex",
93
- "description": "OpenAI GPT-5.1 Codex model via Poe optimized for code generation"
94
- },
95
- {
96
- "name": "GPT-5.1 Codex Mini",
97
- "id": "gpt-5.1-codex-mini",
98
- "description": "OpenAI GPT-5.1 Codex Mini model via Poe for lightweight code generation"
99
- },
100
- {
101
- "name": "Grok-4",
102
- "id": "grok-4",
103
- "description": "Grok-4 model via Poe (OpenAI-compatible) for advanced tasks"
104
- },
105
- {
106
- "name": "Grok-Code-Fast-1",
107
- "id": "Grok-Code-Fast-1",
108
- "description": "Grok-Code-Fast-1 model via Poe (OpenAI-compatible) for fast code generation"
109
- },
110
- {
111
- "name": "Claude-Opus-4.1",
112
- "id": "claude-opus-4.1",
113
- "description": "Anthropic Claude Opus 4.1 via Poe (OpenAI-compatible)"
114
- },
115
- {
116
- "name": "Claude-Sonnet-4.5",
117
- "id": "claude-sonnet-4.5",
118
- "description": "Anthropic Claude Sonnet 4.5 via Poe (OpenAI-compatible)"
119
- },
120
- {
121
- "name": "Claude-Haiku-4.5",
122
- "id": "claude-haiku-4.5",
123
- "description": "Anthropic Claude Haiku 4.5 via Poe (OpenAI-compatible)"
124
- },
125
- {
126
- "name": "Qwen3 Max Preview",
127
- "id": "qwen3-max-preview",
128
- "description": "Qwen3 Max Preview model via DashScope International API"
129
- },
130
- {
131
- "name": "MiniMax M2",
132
- "id": "MiniMaxAI/MiniMax-M2",
133
- "description": "MiniMax M2 model via HuggingFace InferenceClient with Novita provider"
134
- },
135
- {
136
- "name": "Kimi K2 Thinking",
137
- "id": "moonshotai/Kimi-K2-Thinking",
138
- "description": "Moonshot Kimi K2 Thinking model for advanced reasoning and code generation"
139
- }
140
- ]
141
-
142
- k2_model_name_tag = "moonshotai/Kimi-K2-Thinking"
143
-
144
- # Default model selection
145
- DEFAULT_MODEL_NAME = "GPT-5.1 Codex"
146
- DEFAULT_MODEL = None
147
- for _m in AVAILABLE_MODELS:
148
- if _m.get("name") == DEFAULT_MODEL_NAME:
149
- DEFAULT_MODEL = _m
150
- break
151
- if DEFAULT_MODEL is None and AVAILABLE_MODELS:
152
- DEFAULT_MODEL = AVAILABLE_MODELS[0]
153
-
154
- # HF Inference Client
155
- HF_TOKEN = os.getenv('HF_TOKEN')
156
- # Note: HF_TOKEN is checked at runtime when needed, not at import time
157
-
158
- # Language choices for code generation
159
- LANGUAGE_CHOICES = [
160
- "html", "gradio", "transformers.js", "streamlit", "comfyui", "react"
161
- ]
162
-
163
-
164
- def get_gradio_language(language):
165
- """Map composite options to a supported syntax highlighting."""
166
- if language == "streamlit":
167
- return "python"
168
- if language == "gradio":
169
- return "python"
170
- if language == "comfyui":
171
- return "json"
172
- if language == "react":
173
- return "javascript"
174
- return language if language in GRADIO_SUPPORTED_LANGUAGES else None
175
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/deploy.py DELETED
The diff for this file is too large to render. See raw diff
 
anycoder_app/docs_manager.py DELETED
@@ -1,1484 +0,0 @@
1
- """
2
- Documentation management for Gradio, ComfyUI, and FastRTC.
3
- Handles fetching, caching, and updating documentation from llms.txt files.
4
- """
5
- import os
6
- import requests
7
- import re
8
- from datetime import datetime, timedelta
9
- from typing import Optional
10
-
11
- from .config import (
12
- GRADIO_LLMS_TXT_URL, GRADIO_DOCS_CACHE_FILE, GRADIO_DOCS_LAST_UPDATE_FILE,
13
- GRADIO_DOCS_UPDATE_ON_APP_UPDATE, _gradio_docs_content, _gradio_docs_last_fetched,
14
- COMFYUI_LLMS_TXT_URL, COMFYUI_DOCS_CACHE_FILE, COMFYUI_DOCS_LAST_UPDATE_FILE,
15
- COMFYUI_DOCS_UPDATE_ON_APP_UPDATE, _comfyui_docs_content, _comfyui_docs_last_fetched,
16
- FASTRTC_LLMS_TXT_URL, FASTRTC_DOCS_CACHE_FILE, FASTRTC_DOCS_LAST_UPDATE_FILE,
17
- FASTRTC_DOCS_UPDATE_ON_APP_UPDATE, _fastrtc_docs_content, _fastrtc_docs_last_fetched
18
- )
19
- from . import prompts
20
-
21
- def fetch_gradio_docs() -> Optional[str]:
22
- """Fetch the latest Gradio documentation from llms.txt"""
23
- try:
24
- response = requests.get(GRADIO_LLMS_TXT_URL, timeout=10)
25
- response.raise_for_status()
26
- return response.text
27
- except Exception as e:
28
- print(f"Warning: Failed to fetch Gradio docs from {GRADIO_LLMS_TXT_URL}: {e}")
29
- return None
30
-
31
- def fetch_comfyui_docs() -> Optional[str]:
32
- """Fetch the latest ComfyUI documentation from llms.txt"""
33
- try:
34
- response = requests.get(COMFYUI_LLMS_TXT_URL, timeout=10)
35
- response.raise_for_status()
36
- return response.text
37
- except Exception as e:
38
- print(f"Warning: Failed to fetch ComfyUI docs from {COMFYUI_LLMS_TXT_URL}: {e}")
39
- return None
40
-
41
- def fetch_fastrtc_docs() -> Optional[str]:
42
- """Fetch the latest FastRTC documentation from llms.txt"""
43
- try:
44
- response = requests.get(FASTRTC_LLMS_TXT_URL, timeout=10)
45
- response.raise_for_status()
46
- return response.text
47
- except Exception as e:
48
- print(f"Warning: Failed to fetch FastRTC docs from {FASTRTC_LLMS_TXT_URL}: {e}")
49
- return None
50
-
51
- def filter_problematic_instructions(content: str) -> str:
52
- """Filter out problematic instructions that cause LLM to stop generation prematurely"""
53
- if not content:
54
- return content
55
-
56
- # List of problematic phrases that cause early termination when LLM encounters ``` in user code
57
- problematic_patterns = [
58
- r"Output ONLY the code inside a ``` code block, and do not include any explanations or extra text",
59
- r"output only the code inside a ```.*?``` code block",
60
- r"Always output only the.*?code.*?inside.*?```.*?```.*?block",
61
- r"Return ONLY the code inside a.*?```.*?``` code block",
62
- r"Do NOT add the language name at the top of the code output",
63
- r"do not include any explanations or extra text",
64
- r"Always output only the.*?code blocks.*?shown above, and do not include any explanations",
65
- r"Output.*?ONLY.*?code.*?inside.*?```.*?```",
66
- r"Return.*?ONLY.*?code.*?inside.*?```.*?```",
67
- r"Generate.*?ONLY.*?code.*?inside.*?```.*?```",
68
- r"Provide.*?ONLY.*?code.*?inside.*?```.*?```",
69
- ]
70
-
71
- # Remove problematic patterns
72
- filtered_content = content
73
- for pattern in problematic_patterns:
74
- # Use case-insensitive matching
75
- filtered_content = re.sub(pattern, "", filtered_content, flags=re.IGNORECASE | re.DOTALL)
76
-
77
- # Clean up any double newlines or extra whitespace left by removals
78
- filtered_content = re.sub(r'\n\s*\n\s*\n', '\n\n', filtered_content)
79
- filtered_content = re.sub(r'^\s+', '', filtered_content, flags=re.MULTILINE)
80
-
81
- return filtered_content
82
-
83
- def load_cached_gradio_docs() -> Optional[str]:
84
- """Load cached Gradio documentation from file"""
85
- try:
86
- if os.path.exists(GRADIO_DOCS_CACHE_FILE):
87
- with open(GRADIO_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
88
- return f.read()
89
- except Exception as e:
90
- print(f"Warning: Failed to load cached Gradio docs: {e}")
91
- return None
92
-
93
- def save_gradio_docs_cache(content: str):
94
- """Save Gradio documentation to cache file"""
95
- try:
96
- with open(GRADIO_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
97
- f.write(content)
98
- with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
99
- f.write(datetime.now().isoformat())
100
- except Exception as e:
101
- print(f"Warning: Failed to save Gradio docs cache: {e}")
102
-
103
- def load_comfyui_docs_cache() -> Optional[str]:
104
- """Load ComfyUI documentation from cache file"""
105
- try:
106
- if os.path.exists(COMFYUI_DOCS_CACHE_FILE):
107
- with open(COMFYUI_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
108
- return f.read()
109
- except Exception as e:
110
- print(f"Warning: Failed to load cached ComfyUI docs: {e}")
111
- return None
112
-
113
- def save_comfyui_docs_cache(content: str):
114
- """Save ComfyUI documentation to cache file"""
115
- try:
116
- with open(COMFYUI_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
117
- f.write(content)
118
- with open(COMFYUI_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
119
- f.write(datetime.now().isoformat())
120
- except Exception as e:
121
- print(f"Warning: Failed to save ComfyUI docs cache: {e}")
122
-
123
- def load_fastrtc_docs_cache() -> Optional[str]:
124
- """Load FastRTC documentation from cache file"""
125
- try:
126
- if os.path.exists(FASTRTC_DOCS_CACHE_FILE):
127
- with open(FASTRTC_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
128
- return f.read()
129
- except Exception as e:
130
- print(f"Warning: Failed to load cached FastRTC docs: {e}")
131
- return None
132
-
133
- def save_fastrtc_docs_cache(content: str):
134
- """Save FastRTC documentation to cache file"""
135
- try:
136
- with open(FASTRTC_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
137
- f.write(content)
138
- with open(FASTRTC_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
139
- f.write(datetime.now().isoformat())
140
- except Exception as e:
141
- print(f"Warning: Failed to save FastRTC docs cache: {e}")
142
-
143
- def get_last_update_time() -> Optional[datetime]:
144
- """Get the last update time from file"""
145
- try:
146
- if os.path.exists(GRADIO_DOCS_LAST_UPDATE_FILE):
147
- with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'r', encoding='utf-8') as f:
148
- return datetime.fromisoformat(f.read().strip())
149
- except Exception as e:
150
- print(f"Warning: Failed to read last update time: {e}")
151
- return None
152
-
153
- def should_update_gradio_docs() -> bool:
154
- """Check if Gradio documentation should be updated"""
155
- # Only update if we don't have cached content (first run or cache deleted)
156
- return not os.path.exists(GRADIO_DOCS_CACHE_FILE)
157
-
158
- def should_update_comfyui_docs() -> bool:
159
- """Check if ComfyUI documentation should be updated"""
160
- # Only update if we don't have cached content (first run or cache deleted)
161
- return not os.path.exists(COMFYUI_DOCS_CACHE_FILE)
162
-
163
- def should_update_fastrtc_docs() -> bool:
164
- """Check if FastRTC documentation should be updated"""
165
- # Only update if we don't have cached content (first run or cache deleted)
166
- return not os.path.exists(FASTRTC_DOCS_CACHE_FILE)
167
-
168
- def force_update_gradio_docs():
169
- """
170
- Force an update of Gradio documentation (useful when app is updated).
171
-
172
- To manually refresh docs, you can call this function or simply delete the cache file:
173
- rm .gradio_docs_cache.txt && restart the app
174
- """
175
- global _gradio_docs_content, _gradio_docs_last_fetched
176
-
177
- print("🔄 Forcing Gradio documentation update...")
178
- latest_content = fetch_gradio_docs()
179
-
180
- if latest_content:
181
- # Filter out problematic instructions that cause early termination
182
- filtered_content = filter_problematic_instructions(latest_content)
183
- _gradio_docs_content = filtered_content
184
- _gradio_docs_last_fetched = datetime.now()
185
- save_gradio_docs_cache(filtered_content)
186
- update_gradio_system_prompts()
187
- print("✅ Gradio documentation updated successfully")
188
- return True
189
- else:
190
- print("❌ Failed to update Gradio documentation")
191
- return False
192
-
193
- def force_update_comfyui_docs():
194
- """
195
- Force an update of ComfyUI documentation (useful when app is updated).
196
-
197
- To manually refresh docs, you can call this function or simply delete the cache file:
198
- rm .comfyui_docs_cache.txt && restart the app
199
- """
200
- global _comfyui_docs_content, _comfyui_docs_last_fetched
201
-
202
- print("🔄 Forcing ComfyUI documentation update...")
203
- latest_content = fetch_comfyui_docs()
204
-
205
- if latest_content:
206
- # Filter out problematic instructions that cause early termination
207
- filtered_content = filter_problematic_instructions(latest_content)
208
- _comfyui_docs_content = filtered_content
209
- _comfyui_docs_last_fetched = datetime.now()
210
- save_comfyui_docs_cache(filtered_content)
211
- update_json_system_prompts()
212
- print("✅ ComfyUI documentation updated successfully")
213
- return True
214
- else:
215
- print("❌ Failed to update ComfyUI documentation")
216
- return False
217
-
218
- def force_update_fastrtc_docs():
219
- """
220
- Force an update of FastRTC documentation (useful when app is updated).
221
-
222
- To manually refresh docs, you can call this function or simply delete the cache file:
223
- rm .fastrtc_docs_cache.txt && restart the app
224
- """
225
- global _fastrtc_docs_content, _fastrtc_docs_last_fetched
226
-
227
- print("🔄 Forcing FastRTC documentation update...")
228
- latest_content = fetch_fastrtc_docs()
229
-
230
- if latest_content:
231
- # Filter out problematic instructions that cause early termination
232
- filtered_content = filter_problematic_instructions(latest_content)
233
- _fastrtc_docs_content = filtered_content
234
- _fastrtc_docs_last_fetched = datetime.now()
235
- save_fastrtc_docs_cache(filtered_content)
236
- update_gradio_system_prompts()
237
- print("✅ FastRTC documentation updated successfully")
238
- return True
239
- else:
240
- print("❌ Failed to update FastRTC documentation")
241
- return False
242
-
243
- def get_gradio_docs_content() -> str:
244
- """Get the current Gradio documentation content, updating if necessary"""
245
- global _gradio_docs_content, _gradio_docs_last_fetched
246
-
247
- # Check if we need to update
248
- if (_gradio_docs_content is None or
249
- _gradio_docs_last_fetched is None or
250
- should_update_gradio_docs()):
251
-
252
- print("Updating Gradio documentation...")
253
-
254
- # Try to fetch latest content
255
- latest_content = fetch_gradio_docs()
256
-
257
- if latest_content:
258
- # Filter out problematic instructions that cause early termination
259
- filtered_content = filter_problematic_instructions(latest_content)
260
- _gradio_docs_content = filtered_content
261
- _gradio_docs_last_fetched = datetime.now()
262
- save_gradio_docs_cache(filtered_content)
263
- print("✅ Gradio documentation updated successfully")
264
- else:
265
- # Fallback to cached content
266
- cached_content = load_cached_gradio_docs()
267
- if cached_content:
268
- _gradio_docs_content = cached_content
269
- _gradio_docs_last_fetched = datetime.now()
270
- print("⚠️ Using cached Gradio documentation (network fetch failed)")
271
- else:
272
- # Fallback to minimal content
273
- _gradio_docs_content = """
274
- # Gradio API Reference (Offline Fallback)
275
-
276
- This is a minimal fallback when documentation cannot be fetched.
277
- Please check your internet connection for the latest API reference.
278
-
279
- Basic Gradio components: Button, Textbox, Slider, Image, Audio, Video, File, etc.
280
- Use gr.Blocks() for custom layouts and gr.Interface() for simple apps.
281
- """
282
- print("❌ Using minimal fallback documentation")
283
-
284
- return _gradio_docs_content or ""
285
-
286
- def get_comfyui_docs_content() -> str:
287
- """Get the current ComfyUI documentation content, updating if necessary"""
288
- global _comfyui_docs_content, _comfyui_docs_last_fetched
289
-
290
- # Check if we need to update
291
- if (_comfyui_docs_content is None or
292
- _comfyui_docs_last_fetched is None or
293
- should_update_comfyui_docs()):
294
-
295
- print("Updating ComfyUI documentation...")
296
-
297
- # Try to fetch latest content
298
- latest_content = fetch_comfyui_docs()
299
-
300
- if latest_content:
301
- # Filter out problematic instructions that cause early termination
302
- filtered_content = filter_problematic_instructions(latest_content)
303
- _comfyui_docs_content = filtered_content
304
- _comfyui_docs_last_fetched = datetime.now()
305
- save_comfyui_docs_cache(filtered_content)
306
- print("✅ ComfyUI documentation updated successfully")
307
- else:
308
- # Fallback to cached content
309
- cached_content = load_comfyui_docs_cache()
310
- if cached_content:
311
- _comfyui_docs_content = cached_content
312
- _comfyui_docs_last_fetched = datetime.now()
313
- print("⚠️ Using cached ComfyUI documentation (network fetch failed)")
314
- else:
315
- # Fallback to minimal content
316
- _comfyui_docs_content = """
317
- # ComfyUI API Reference (Offline Fallback)
318
-
319
- This is a minimal fallback when documentation cannot be fetched.
320
- Please check your internet connection for the latest API reference.
321
-
322
- Basic ComfyUI workflow structure: nodes, connections, inputs, outputs.
323
- Use CheckpointLoaderSimple, CLIPTextEncode, KSampler for basic workflows.
324
- """
325
- print("❌ Using minimal fallback documentation")
326
-
327
- return _comfyui_docs_content or ""
328
-
329
- def get_fastrtc_docs_content() -> str:
330
- """Get the current FastRTC documentation content, updating if necessary"""
331
- global _fastrtc_docs_content, _fastrtc_docs_last_fetched
332
-
333
- # Check if we need to update
334
- if (_fastrtc_docs_content is None or
335
- _fastrtc_docs_last_fetched is None or
336
- should_update_fastrtc_docs()):
337
-
338
- print("Updating FastRTC documentation...")
339
-
340
- # Try to fetch latest content
341
- latest_content = fetch_fastrtc_docs()
342
-
343
- if latest_content:
344
- # Filter out problematic instructions that cause early termination
345
- filtered_content = filter_problematic_instructions(latest_content)
346
- _fastrtc_docs_content = filtered_content
347
- _fastrtc_docs_last_fetched = datetime.now()
348
- save_fastrtc_docs_cache(filtered_content)
349
- print("✅ FastRTC documentation updated successfully")
350
- else:
351
- # Fallback to cached content
352
- cached_content = load_fastrtc_docs_cache()
353
- if cached_content:
354
- _fastrtc_docs_content = cached_content
355
- _fastrtc_docs_last_fetched = datetime.now()
356
- print("⚠️ Using cached FastRTC documentation (network fetch failed)")
357
- else:
358
- # Fallback to minimal content
359
- _fastrtc_docs_content = """
360
- # FastRTC API Reference (Offline Fallback)
361
-
362
- This is a minimal fallback when documentation cannot be fetched.
363
- Please check your internet connection for the latest API reference.
364
-
365
- Basic FastRTC usage: Stream class, handlers, real-time audio/video processing.
366
- Use Stream(handler, modality, mode) for real-time communication apps.
367
- """
368
- print("❌ Using minimal fallback documentation")
369
-
370
- return _fastrtc_docs_content or ""
371
-
372
- def update_gradio_system_prompts():
373
- """Update the global Gradio system prompts with latest documentation"""
374
- docs_content = get_gradio_docs_content()
375
- fastrtc_content = get_fastrtc_docs_content()
376
-
377
- # Base system prompt
378
- base_prompt = """You are an expert Gradio developer. Create a complete, working Gradio application based on the user's request. Generate all necessary code to make the application functional and runnable.
379
-
380
- 🚨 CRITICAL OUTPUT RULES:
381
- - DO NOT use <think> tags or thinking blocks in your output
382
- - DO NOT use [TOOL_CALL] or any tool call markers
383
- - Generate ONLY the requested code files and requirements.txt
384
- - No explanatory text outside the code blocks
385
-
386
- ## 🎯 Working with Imported Model Code
387
-
388
- **CRITICAL: If the user has imported model code in the conversation history (InferenceClient, transformers, diffusers), you MUST integrate it into your Gradio application!**
389
-
390
- **For InferenceClient Code (HuggingFace Inference API):**
391
- - DO NOT just copy the standalone inference code
392
- - Create a complete Gradio application that wraps the inference code
393
- - Use `gr.ChatInterface()` for chat models or appropriate interface for other tasks
394
- - Extract the model name from the imported code
395
- - Implement proper streaming if the model supports it
396
- - Handle conversation history correctly
397
-
398
- **Example Structure for Chatbot:**
399
- ```python
400
- import gradio as gr
401
- import os
402
- from huggingface_hub import InferenceClient
403
-
404
- # Use the InferenceClient configuration from imported code
405
- client = InferenceClient(api_key=os.environ["HF_TOKEN"])
406
-
407
- def respond(message, history):
408
- # Build messages from history
409
- messages = [{"role": "system", "content": "You are a helpful assistant."}]
410
- for user_msg, assistant_msg in history:
411
- messages.append({"role": "user", "content": user_msg})
412
- messages.append({"role": "assistant", "content": assistant_msg})
413
- messages.append({"role": "user", "content": message})
414
-
415
- # Call the model (use model name from imported code)
416
- response = ""
417
- for chunk in client.chat.completions.create(
418
- model="MODEL_NAME_FROM_IMPORTED_CODE",
419
- messages=messages,
420
- stream=True,
421
- max_tokens=1024,
422
- ):
423
- if chunk.choices[0].delta.content:
424
- response += chunk.choices[0].delta.content
425
- yield response
426
-
427
- demo = gr.ChatInterface(respond, title="Chatbot", description="Chat with the model")
428
- demo.launch()
429
- ```
430
-
431
- **For Transformers/Diffusers Code:**
432
- - Extract model loading and inference logic
433
- - Wrap it in appropriate Gradio interface
434
- - For chat models: use gr.ChatInterface
435
- - For image generation: use gr.Interface with image output
436
- - For other tasks: choose appropriate interface type
437
- - Include proper error handling and loading states
438
-
439
- **Key Requirements:**
440
- 1. ✅ ALWAYS create a complete Gradio application, not just inference code
441
- 2. ✅ Extract model configuration from imported code
442
- 3. ✅ Use appropriate Gradio interface for the task
443
- 4. ✅ Include demo.launch() at the end
444
- 5. ✅ Add requirements.txt with necessary dependencies
445
-
446
- ## Multi-File Application Structure
447
-
448
- When creating complex Gradio applications, organize your code into multiple files for better maintainability:
449
-
450
- **File Organization:**
451
- - `app.py` - Main application entry point with Gradio interface
452
- - `utils.py` - Utility functions and helpers
453
- - `models.py` - Model loading and inference functions
454
- - `config.py` - Configuration and constants
455
- - `requirements.txt` - Python dependencies
456
- - Additional modules as needed (e.g., `data_processing.py`, `ui_components.py`)
457
-
458
- **🚨 CRITICAL: DO NOT Generate README.md Files**
459
- - NEVER generate README.md files under any circumstances
460
- - A template README.md is automatically provided and will be overridden by the deployment system
461
- - Generating a README.md will break the deployment process
462
- - Only generate the code files listed above
463
-
464
- **Output Format for Multi-File Apps:**
465
- When generating multi-file applications, use this exact format:
466
-
467
- ```
468
- === app.py ===
469
- [main application code]
470
-
471
- === utils.py ===
472
- [utility functions]
473
-
474
- === requirements.txt ===
475
- [dependencies]
476
- ```
477
-
478
- **🚨 CRITICAL: Always Generate requirements.txt for New Applications**
479
- - ALWAYS include requirements.txt when creating new Gradio applications
480
- - Generate comprehensive, production-ready dependencies based on your code
481
- - Include not just direct imports but also commonly needed companion packages
482
- - Use correct PyPI package names (e.g., PIL → Pillow, sklearn → scikit-learn)
483
- - For diffusers: use `git+https://github.com/huggingface/diffusers`
484
- - For transformers: use `git+https://github.com/huggingface/transformers`
485
- - Include supporting packages (accelerate, torch, tokenizers, etc.) when using ML libraries
486
- - Your requirements.txt should ensure the application works smoothly in production
487
-
488
- **🚨 CRITICAL: requirements.txt Formatting Rules**
489
- - Output ONLY plain text package names, one per line
490
- - Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
491
- - Do NOT add explanatory text or descriptions
492
- - Do NOT wrap in code blocks
493
- - Just raw package names as they would appear in a real requirements.txt file
494
- - Example of CORRECT format:
495
- gradio
496
- torch
497
- transformers
498
- - Example of INCORRECT format (DO NOT DO THIS):
499
- ```
500
- gradio # For web interface
501
- **Core dependencies:**
502
- - torch
503
- ```
504
-
505
- **Single vs Multi-File Decision:**
506
- - Use single file for simple applications (< 100 lines) - but still generate requirements.txt if dependencies exist
507
- - Use multi-file structure for complex applications with:
508
- - Multiple models or processing pipelines
509
- - Extensive utility functions
510
- - Complex UI with many components
511
- - Data processing workflows
512
- - When user specifically requests modular structure
513
-
514
- 🚨 IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed.
515
-
516
- 🚨 CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models.
517
-
518
- ## ZeroGPU Integration (MANDATORY)
519
-
520
- ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps:
521
-
522
- 1. Import the spaces module: `import spaces`
523
- 2. Decorate GPU-dependent functions with `@spaces.GPU`
524
- 3. Specify appropriate duration based on expected runtime:
525
- - Quick inference (< 30s): `@spaces.GPU(duration=30)`
526
- - Standard generation (30-60s): `@spaces.GPU` (default 60s)
527
- - Complex generation (60-120s): `@spaces.GPU(duration=120)`
528
- - Heavy processing (120-180s): `@spaces.GPU(duration=180)`
529
-
530
- Example usage:
531
- ```python
532
- import spaces
533
- from diffusers import DiffusionPipeline
534
-
535
- pipe = DiffusionPipeline.from_pretrained(...)
536
- pipe.to('cuda')
537
-
538
- @spaces.GPU(duration=120)
539
- def generate(prompt):
540
- return pipe(prompt).images
541
-
542
- gr.Interface(
543
- fn=generate,
544
- inputs=gr.Text(),
545
- outputs=gr.Gallery(),
546
- ).launch()
547
- ```
548
-
549
- Duration Guidelines:
550
- - Shorter durations improve queue priority for users
551
- - Text-to-image: typically 30-60 seconds
552
- - Image-to-image: typically 20-40 seconds
553
- - Video generation: typically 60-180 seconds
554
- - Audio/music generation: typically 30-90 seconds
555
- - Model loading + inference: add 10-30s buffer
556
- - AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration
557
-
558
- Functions that typically need @spaces.GPU:
559
- - Image generation (text-to-image, image-to-image)
560
- - Video generation
561
- - Audio/music generation
562
- - Model inference with transformers, diffusers
563
- - Any function using .to('cuda') or GPU operations
564
-
565
- ## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models
566
-
567
- FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION.
568
- This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces.
569
-
570
- ALWAYS implement this pattern for diffusion models:
571
-
572
- ### MANDATORY: Basic AoT Compilation Pattern
573
- YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.):
574
-
575
- 1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500)
576
- 2. ALWAYS use spaces.aoti_capture to capture inputs
577
- 3. ALWAYS use torch.export.export to export the transformer
578
- 4. ALWAYS use spaces.aoti_compile to compile
579
- 5. ALWAYS use spaces.aoti_apply to apply to pipeline
580
-
581
- ### Required AoT Implementation
582
- ```python
583
- import spaces
584
- import torch
585
- from diffusers import DiffusionPipeline
586
-
587
- MODEL_ID = 'black-forest-labs/FLUX.1-dev'
588
- pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
589
- pipe.to('cuda')
590
-
591
- @spaces.GPU(duration=1500) # Maximum duration allowed during startup
592
- def compile_transformer():
593
- # 1. Capture example inputs
594
- with spaces.aoti_capture(pipe.transformer) as call:
595
- pipe("arbitrary example prompt")
596
-
597
- # 2. Export the model
598
- exported = torch.export.export(
599
- pipe.transformer,
600
- args=call.args,
601
- kwargs=call.kwargs,
602
- )
603
-
604
- # 3. Compile the exported model
605
- return spaces.aoti_compile(exported)
606
-
607
- # 4. Apply compiled model to pipeline
608
- compiled_transformer = compile_transformer()
609
- spaces.aoti_apply(compiled_transformer, pipe.transformer)
610
-
611
- @spaces.GPU
612
- def generate(prompt):
613
- return pipe(prompt).images
614
- ```
615
-
616
- ### Advanced Optimizations
617
-
618
- #### FP8 Quantization (Additional 1.2x speedup on H200)
619
- ```python
620
- from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
621
-
622
- @spaces.GPU(duration=1500)
623
- def compile_transformer_with_quantization():
624
- # Quantize before export for FP8 speedup
625
- quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
626
-
627
- with spaces.aoti_capture(pipe.transformer) as call:
628
- pipe("arbitrary example prompt")
629
-
630
- exported = torch.export.export(
631
- pipe.transformer,
632
- args=call.args,
633
- kwargs=call.kwargs,
634
- )
635
- return spaces.aoti_compile(exported)
636
- ```
637
-
638
- #### Dynamic Shapes (Variable input sizes)
639
- ```python
640
- from torch.utils._pytree import tree_map
641
-
642
- @spaces.GPU(duration=1500)
643
- def compile_transformer_dynamic():
644
- with spaces.aoti_capture(pipe.transformer) as call:
645
- pipe("arbitrary example prompt")
646
-
647
- # Define dynamic dimension ranges (model-dependent)
648
- transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212)
649
-
650
- # Map argument names to dynamic dimensions
651
- transformer_dynamic_shapes = {
652
- "hidden_states": {1: transformer_hidden_dim},
653
- "img_ids": {0: transformer_hidden_dim},
654
- }
655
-
656
- # Create dynamic shapes structure
657
- dynamic_shapes = tree_map(lambda v: None, call.kwargs)
658
- dynamic_shapes.update(transformer_dynamic_shapes)
659
-
660
- exported = torch.export.export(
661
- pipe.transformer,
662
- args=call.args,
663
- kwargs=call.kwargs,
664
- dynamic_shapes=dynamic_shapes,
665
- )
666
- return spaces.aoti_compile(exported)
667
- ```
668
-
669
- #### Multi-Compile for Different Resolutions
670
- ```python
671
- @spaces.GPU(duration=1500)
672
- def compile_multiple_resolutions():
673
- compiled_models = {}
674
- resolutions = [(512, 512), (768, 768), (1024, 1024)]
675
-
676
- for width, height in resolutions:
677
- # Capture inputs for specific resolution
678
- with spaces.aoti_capture(pipe.transformer) as call:
679
- pipe(f"test prompt {width}x{height}", width=width, height=height)
680
-
681
- exported = torch.export.export(
682
- pipe.transformer,
683
- args=call.args,
684
- kwargs=call.kwargs,
685
- )
686
- compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported)
687
-
688
- return compiled_models
689
-
690
- # Usage with resolution dispatch
691
- compiled_models = compile_multiple_resolutions()
692
-
693
- @spaces.GPU
694
- def generate_with_resolution(prompt, width=1024, height=1024):
695
- resolution_key = f"{width}x{height}"
696
- if resolution_key in compiled_models:
697
- # Temporarily apply the right compiled model
698
- spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer)
699
- return pipe(prompt, width=width, height=height).images
700
- ```
701
-
702
- #### FlashAttention-3 Integration
703
- ```python
704
- from kernels import get_kernel
705
-
706
- # Load pre-built FA3 kernel compatible with H200
707
- try:
708
- vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
709
- print("✅ FlashAttention-3 kernel loaded successfully")
710
- except Exception as e:
711
- print(f"⚠️ FlashAttention-3 not available: {e}")
712
-
713
- # Custom attention processor example
714
- class FlashAttention3Processor:
715
- def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
716
- # Use FA3 kernel for attention computation
717
- return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask)
718
-
719
- # Apply FA3 processor to model
720
- if 'vllm_flash_attn3' in locals():
721
- for name, module in pipe.transformer.named_modules():
722
- if hasattr(module, 'processor'):
723
- module.processor = FlashAttention3Processor()
724
- ```
725
-
726
- ### Complete Optimized Example
727
- ```python
728
- import spaces
729
- import torch
730
- from diffusers import DiffusionPipeline
731
- from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
732
-
733
- MODEL_ID = 'black-forest-labs/FLUX.1-dev'
734
- pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
735
- pipe.to('cuda')
736
-
737
- @spaces.GPU(duration=1500)
738
- def compile_optimized_transformer():
739
- # Apply FP8 quantization
740
- quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
741
-
742
- # Capture inputs
743
- with spaces.aoti_capture(pipe.transformer) as call:
744
- pipe("optimization test prompt")
745
-
746
- # Export and compile
747
- exported = torch.export.export(
748
- pipe.transformer,
749
- args=call.args,
750
- kwargs=call.kwargs,
751
- )
752
- return spaces.aoti_compile(exported)
753
-
754
- # Compile during startup
755
- compiled_transformer = compile_optimized_transformer()
756
- spaces.aoti_apply(compiled_transformer, pipe.transformer)
757
-
758
- @spaces.GPU
759
- def generate(prompt):
760
- return pipe(prompt).images
761
- ```
762
-
763
- **Expected Performance Gains:**
764
- - Basic AoT: 1.3x-1.8x speedup
765
- - + FP8 Quantization: Additional 1.2x speedup
766
- - + FlashAttention-3: Additional attention speedup
767
- - Total potential: 2x-3x faster inference
768
- **Hardware Requirements:**
769
- - FP8 quantization requires CUDA compute capability ≥ 9.0 (H200 ✅)
770
- - FlashAttention-3 works on H200 hardware via kernels library
771
- - Dynamic shapes add flexibility for variable input sizes
772
- ## MCP Server Integration
773
-
774
- When the user requests an MCP-enabled Gradio app or asks for tool calling capabilities, you MUST enable MCP server functionality.
775
-
776
- **🚨 CRITICAL: Enabling MCP Server**
777
- To make your Gradio app function as an MCP (Model Control Protocol) server:
778
- 1. Set `mcp_server=True` in the `.launch()` method
779
- 2. Add `"gradio[mcp]"` to requirements.txt (not just `gradio`)
780
- 3. Ensure all functions have detailed docstrings with proper Args sections
781
- 4. Use type hints for all function parameters
782
-
783
- **Example:**
784
- ```
785
- import gradio as gr
786
-
787
- def letter_counter(word: str, letter: str) -> int:
788
- \"\"\"
789
- Count the number of occurrences of a letter in a word or text.
790
-
791
- Args:
792
- word (str): The input text to search through
793
- letter (str): The letter to search for
794
-
795
- Returns:
796
- int: The number of times the letter appears
797
- \"\"\"
798
- return word.lower().count(letter.lower())
799
-
800
- demo = gr.Interface(
801
- fn=letter_counter,
802
- inputs=[gr.Textbox("strawberry"), gr.Textbox("r")],
803
- outputs=[gr.Number()],
804
- title="Letter Counter",
805
- description="Count letter occurrences in text."
806
- )
807
-
808
- if __name__ == "__main__":
809
- demo.launch(mcp_server=True)
810
- ```
811
-
812
- **When to Enable MCP:**
813
- - User explicitly requests "MCP server" or "MCP-enabled app"
814
- - User wants tool calling capabilities for LLMs
815
- - User mentions Claude Desktop, Cursor, or Cline integration
816
- - User wants to expose functions as tools for AI assistants
817
-
818
- **MCP Requirements:**
819
- 1. **Dependencies:** Always use `gradio[mcp]` in requirements.txt (not plain `gradio`)
820
- 2. **Docstrings:** Every function must have a detailed docstring with:
821
- - Brief description on first line
822
- - Args section listing each parameter with type and description
823
- - Returns section (optional but recommended)
824
- 3. **Type Hints:** All parameters must have type hints (e.g., `word: str`, `count: int`)
825
- 4. **Default Values:** Use default values in components to provide examples
826
-
827
- **Best Practices for MCP Tools:**
828
- - Use descriptive function names (they become tool names)
829
- - Keep functions focused and single-purpose
830
- - Accept string parameters when possible for better compatibility
831
- - Return simple types (str, int, float, list, dict) rather than complex objects
832
- - Use gr.Header for authentication headers when needed
833
- - Use gr.Progress() for long-running operations
834
-
835
- **Multiple Tools Example:**
836
- ```
837
- import gradio as gr
838
-
839
- def add_numbers(a: str, b: str) -> str:
840
- \"\"\"
841
- Add two numbers together.
842
-
843
- Args:
844
- a (str): First number
845
- b (str): Second number
846
-
847
- Returns:
848
- str: Sum of the two numbers
849
- \"\"\"
850
- return str(int(a) + int(b))
851
-
852
- def multiply_numbers(a: str, b: str) -> str:
853
- \"\"\"
854
- Multiply two numbers.
855
-
856
- Args:
857
- a (str): First number
858
- b (str): Second number
859
-
860
- Returns:
861
- str: Product of the two numbers
862
- \"\"\"
863
- return str(int(a) * int(b))
864
-
865
- with gr.Blocks() as demo:
866
- gr.Markdown("# Math Tools MCP Server")
867
-
868
- with gr.Tab("Add"):
869
- gr.Interface(add_numbers, [gr.Textbox("5"), gr.Textbox("3")], gr.Textbox())
870
-
871
- with gr.Tab("Multiply"):
872
- gr.Interface(multiply_numbers, [gr.Textbox("4"), gr.Textbox("7")], gr.Textbox())
873
-
874
- if __name__ == "__main__":
875
- demo.launch(mcp_server=True)
876
- ```
877
-
878
- **REMEMBER:** If MCP is requested, ALWAYS:
879
- 1. Set `mcp_server=True` in `.launch()`
880
- 2. Use `gradio[mcp]` in requirements.txt
881
- 3. Include complete docstrings with Args sections
882
- 4. Add type hints to all parameters
883
-
884
- ## Complete Gradio API Reference
885
-
886
- This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy.
887
-
888
- """
889
-
890
- # Search-enabled prompt
891
- search_prompt = """You are an expert Gradio developer with access to real-time web search. Create a complete, working Gradio application based on the user's request. When needed, use web search to find current best practices or verify latest Gradio features. Generate all necessary code to make the application functional and runnable.
892
-
893
- ## Multi-File Application Structure
894
-
895
- When creating complex Gradio applications, organize your code into multiple files for better maintainability:
896
-
897
- **File Organization:**
898
- - `app.py` - Main application entry point with Gradio interface
899
- - `utils.py` - Utility functions and helpers
900
- - `models.py` - Model loading and inference functions
901
- - `config.py` - Configuration and constants
902
- - `requirements.txt` - Python dependencies
903
- - Additional modules as needed (e.g., `data_processing.py`, `ui_components.py`)
904
-
905
- **🚨 CRITICAL: DO NOT Generate README.md Files**
906
- - NEVER generate README.md files under any circumstances
907
- - A template README.md is automatically provided and will be overridden by the deployment system
908
- - Generating a README.md will break the deployment process
909
- - Only generate the code files listed above
910
-
911
- **Output Format for Multi-File Apps:**
912
- When generating multi-file applications, use this exact format:
913
-
914
- ```
915
- === app.py ===
916
- [main application code]
917
-
918
- === utils.py ===
919
- [utility functions]
920
-
921
- === requirements.txt ===
922
- [dependencies]
923
- ```
924
-
925
- **🚨 CRITICAL: requirements.txt Formatting Rules**
926
- - Output ONLY plain text package names, one per line
927
- - Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
928
- - Do NOT add explanatory text or descriptions
929
- - Do NOT wrap in code blocks
930
- - Just raw package names as they would appear in a real requirements.txt file
931
- - Example of CORRECT format:
932
- gradio
933
- torch
934
- transformers
935
- - Example of INCORRECT format (DO NOT DO THIS):
936
- ```
937
- gradio # For web interface
938
- **Core dependencies:**
939
- - torch
940
- ```
941
-
942
- **Single vs Multi-File Decision:**
943
- - Use single file for simple applications (< 100 lines) - but still generate requirements.txt if dependencies exist
944
- - Use multi-file structure for complex applications with:
945
- - Multiple models or processing pipelines
946
- - Extensive utility functions
947
- - Complex UI with many components
948
- - Data processing workflows
949
- - When user specifically requests modular structure
950
-
951
- 🚨 IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed.
952
-
953
- 🚨 CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models.
954
-
955
- ## ZeroGPU Integration (MANDATORY)
956
-
957
- ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps:
958
-
959
- 1. Import the spaces module: `import spaces`
960
- 2. Decorate GPU-dependent functions with `@spaces.GPU`
961
- 3. Specify appropriate duration based on expected runtime:
962
- - Quick inference (< 30s): `@spaces.GPU(duration=30)`
963
- - Standard generation (30-60s): `@spaces.GPU` (default 60s)
964
- - Complex generation (60-120s): `@spaces.GPU(duration=120)`
965
- - Heavy processing (120-180s): `@spaces.GPU(duration=180)`
966
-
967
- Example usage:
968
- ```
969
- import spaces
970
- from diffusers import DiffusionPipeline
971
-
972
- pipe = DiffusionPipeline.from_pretrained(...)
973
- pipe.to('cuda')
974
-
975
- @spaces.GPU(duration=120)
976
- def generate(prompt):
977
- return pipe(prompt).images
978
-
979
- gr.Interface(
980
- fn=generate,
981
- inputs=gr.Text(),
982
- outputs=gr.Gallery(),
983
- ).launch()
984
- ```
985
-
986
- Duration Guidelines:
987
- - Shorter durations improve queue priority for users
988
- - Text-to-image: typically 30-60 seconds
989
- - Image-to-image: typically 20-40 seconds
990
- - Video generation: typically 60-180 seconds
991
- - Audio/music generation: typically 30-90 seconds
992
- - Model loading + inference: add 10-30s buffer
993
- - AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration
994
-
995
- Functions that typically need @spaces.GPU:
996
- - Image generation (text-to-image, image-to-image)
997
- - Video generation
998
- - Audio/music generation
999
- - Model inference with transformers, diffusers
1000
- - Any function using .to('cuda') or GPU operations
1001
-
1002
- ## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models
1003
-
1004
- FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION.
1005
- This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces.
1006
-
1007
- ALWAYS implement this pattern for diffusion models:
1008
-
1009
- ### MANDATORY: Basic AoT Compilation Pattern
1010
- YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.):
1011
-
1012
- 1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500)
1013
- 2. ALWAYS use spaces.aoti_capture to capture inputs
1014
- 3. ALWAYS use torch.export.export to export the transformer
1015
- 4. ALWAYS use spaces.aoti_compile to compile
1016
- 5. ALWAYS use spaces.aoti_apply to apply to pipeline
1017
-
1018
- ### Required AoT Implementation
1019
-
1020
- For production Spaces with heavy models, use ahead-of-time (AoT) compilation for 1.3x-1.8x speedups:
1021
-
1022
- ### Basic AoT Compilation
1023
- ```
1024
- import spaces
1025
- import torch
1026
- from diffusers import DiffusionPipeline
1027
-
1028
- MODEL_ID = 'black-forest-labs/FLUX.1-dev'
1029
- pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
1030
- pipe.to('cuda')
1031
-
1032
- @spaces.GPU(duration=1500) # Maximum duration allowed during startup
1033
- def compile_transformer():
1034
- # 1. Capture example inputs
1035
- with spaces.aoti_capture(pipe.transformer) as call:
1036
- pipe("arbitrary example prompt")
1037
-
1038
- # 2. Export the model
1039
- exported = torch.export.export(
1040
- pipe.transformer,
1041
- args=call.args,
1042
- kwargs=call.kwargs,
1043
- )
1044
-
1045
- # 3. Compile the exported model
1046
- return spaces.aoti_compile(exported)
1047
-
1048
- # 4. Apply compiled model to pipeline
1049
- compiled_transformer = compile_transformer()
1050
- spaces.aoti_apply(compiled_transformer, pipe.transformer)
1051
-
1052
- @spaces.GPU
1053
- def generate(prompt):
1054
- return pipe(prompt).images
1055
- ```
1056
-
1057
- ### Advanced Optimizations
1058
-
1059
- #### FP8 Quantization (Additional 1.2x speedup on H200)
1060
- ```
1061
- from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
1062
-
1063
- @spaces.GPU(duration=1500)
1064
- def compile_transformer_with_quantization():
1065
- # Quantize before export for FP8 speedup
1066
- quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
1067
-
1068
- with spaces.aoti_capture(pipe.transformer) as call:
1069
- pipe("arbitrary example prompt")
1070
-
1071
- exported = torch.export.export(
1072
- pipe.transformer,
1073
- args=call.args,
1074
- kwargs=call.kwargs,
1075
- )
1076
- return spaces.aoti_compile(exported)
1077
- ```
1078
-
1079
- #### Dynamic Shapes (Variable input sizes)
1080
- ```
1081
- from torch.utils._pytree import tree_map
1082
-
1083
- @spaces.GPU(duration=1500)
1084
- def compile_transformer_dynamic():
1085
- with spaces.aoti_capture(pipe.transformer) as call:
1086
- pipe("arbitrary example prompt")
1087
-
1088
- # Define dynamic dimension ranges (model-dependent)
1089
- transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212)
1090
-
1091
- # Map argument names to dynamic dimensions
1092
- transformer_dynamic_shapes = {
1093
- "hidden_states": {1: transformer_hidden_dim},
1094
- "img_ids": {0: transformer_hidden_dim},
1095
- }
1096
-
1097
- # Create dynamic shapes structure
1098
- dynamic_shapes = tree_map(lambda v: None, call.kwargs)
1099
- dynamic_shapes.update(transformer_dynamic_shapes)
1100
-
1101
- exported = torch.export.export(
1102
- pipe.transformer,
1103
- args=call.args,
1104
- kwargs=call.kwargs,
1105
- dynamic_shapes=dynamic_shapes,
1106
- )
1107
- return spaces.aoti_compile(exported)
1108
- ```
1109
-
1110
- #### Multi-Compile for Different Resolutions
1111
- ```
1112
- @spaces.GPU(duration=1500)
1113
- def compile_multiple_resolutions():
1114
- compiled_models = {}
1115
- resolutions = [(512, 512), (768, 768), (1024, 1024)]
1116
-
1117
- for width, height in resolutions:
1118
- # Capture inputs for specific resolution
1119
- with spaces.aoti_capture(pipe.transformer) as call:
1120
- pipe(f"test prompt {width}x{height}", width=width, height=height)
1121
-
1122
- exported = torch.export.export(
1123
- pipe.transformer,
1124
- args=call.args,
1125
- kwargs=call.kwargs,
1126
- )
1127
- compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported)
1128
-
1129
- return compiled_models
1130
-
1131
- # Usage with resolution dispatch
1132
- compiled_models = compile_multiple_resolutions()
1133
-
1134
- @spaces.GPU
1135
- def generate_with_resolution(prompt, width=1024, height=1024):
1136
- resolution_key = f"{width}x{height}"
1137
- if resolution_key in compiled_models:
1138
- # Temporarily apply the right compiled model
1139
- spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer)
1140
- return pipe(prompt, width=width, height=height).images
1141
- ```
1142
-
1143
- #### FlashAttention-3 Integration
1144
- ```
1145
- from kernels import get_kernel
1146
-
1147
- # Load pre-built FA3 kernel compatible with H200
1148
- try:
1149
- vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
1150
- print("✅ FlashAttention-3 kernel loaded successfully")
1151
- except Exception as e:
1152
- print(f"⚠️ FlashAttention-3 not available: {e}")
1153
-
1154
- # Custom attention processor example
1155
- class FlashAttention3Processor:
1156
- def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
1157
- # Use FA3 kernel for attention computation
1158
- return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask)
1159
-
1160
- # Apply FA3 processor to model
1161
- if 'vllm_flash_attn3' in locals():
1162
- for name, module in pipe.transformer.named_modules():
1163
- if hasattr(module, 'processor'):
1164
- module.processor = FlashAttention3Processor()
1165
- ```
1166
-
1167
- ### Complete Optimized Example
1168
- ```
1169
- import spaces
1170
- import torch
1171
- from diffusers import DiffusionPipeline
1172
- from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
1173
-
1174
- MODEL_ID = 'black-forest-labs/FLUX.1-dev'
1175
- pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
1176
- pipe.to('cuda')
1177
-
1178
- @spaces.GPU(duration=1500)
1179
- def compile_optimized_transformer():
1180
- # Apply FP8 quantization
1181
- quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
1182
-
1183
- # Capture inputs
1184
- with spaces.aoti_capture(pipe.transformer) as call:
1185
- pipe("optimization test prompt")
1186
-
1187
- # Export and compile
1188
- exported = torch.export.export(
1189
- pipe.transformer,
1190
- args=call.args,
1191
- kwargs=call.kwargs,
1192
- )
1193
- return spaces.aoti_compile(exported)
1194
-
1195
- # Compile during startup
1196
- compiled_transformer = compile_optimized_transformer()
1197
- spaces.aoti_apply(compiled_transformer, pipe.transformer)
1198
-
1199
- @spaces.GPU
1200
- def generate(prompt):
1201
- return pipe(prompt).images
1202
- ```
1203
-
1204
- **Expected Performance Gains:**
1205
- - Basic AoT: 1.3x-1.8x speedup
1206
- - + FP8 Quantization: Additional 1.2x speedup
1207
- - + FlashAttention-3: Additional attention speedup
1208
- - Total potential: 2x-3x faster inference
1209
-
1210
- **Hardware Requirements:**
1211
- - FP8 quantization requires CUDA compute capability ≥ 9.0 (H200 ✅)
1212
- - FlashAttention-3 works on H200 hardware via kernels library
1213
- - Dynamic shapes add flexibility for variable input sizes
1214
-
1215
- ## MCP Server Integration
1216
-
1217
- When the user requests an MCP-enabled Gradio app or asks for tool calling capabilities, you MUST enable MCP server functionality.
1218
-
1219
- **🚨 CRITICAL: Enabling MCP Server**
1220
- To make your Gradio app function as an MCP (Model Control Protocol) server:
1221
- 1. Set `mcp_server=True` in the `.launch()` method
1222
- 2. Add `"gradio[mcp]"` to requirements.txt (not just `gradio`)
1223
- 3. Ensure all functions have detailed docstrings with proper Args sections
1224
- 4. Use type hints for all function parameters
1225
-
1226
- **Example:**
1227
- ```
1228
- import gradio as gr
1229
-
1230
- def letter_counter(word: str, letter: str) -> int:
1231
- \"\"\"
1232
- Count the number of occurrences of a letter in a word or text.
1233
-
1234
- Args:
1235
- word (str): The input text to search through
1236
- letter (str): The letter to search for
1237
-
1238
- Returns:
1239
- int: The number of times the letter appears
1240
- \"\"\"
1241
- return word.lower().count(letter.lower())
1242
-
1243
- demo = gr.Interface(
1244
- fn=letter_counter,
1245
- inputs=[gr.Textbox("strawberry"), gr.Textbox("r")],
1246
- outputs=[gr.Number()],
1247
- title="Letter Counter",
1248
- description="Count letter occurrences in text."
1249
- )
1250
-
1251
- if __name__ == "__main__":
1252
- demo.launch(mcp_server=True)
1253
- ```
1254
-
1255
- **When to Enable MCP:**
1256
- - User explicitly requests "MCP server" or "MCP-enabled app"
1257
- - User wants tool calling capabilities for LLMs
1258
- - User mentions Claude Desktop, Cursor, or Cline integration
1259
- - User wants to expose functions as tools for AI assistants
1260
-
1261
- **MCP Requirements:**
1262
- 1. **Dependencies:** Always use `gradio[mcp]` in requirements.txt (not plain `gradio`)
1263
- 2. **Docstrings:** Every function must have a detailed docstring with:
1264
- - Brief description on first line
1265
- - Args section listing each parameter with type and description
1266
- - Returns section (optional but recommended)
1267
- 3. **Type Hints:** All parameters must have type hints (e.g., `word: str`, `count: int`)
1268
- 4. **Default Values:** Use default values in components to provide examples
1269
-
1270
- **Best Practices for MCP Tools:**
1271
- - Use descriptive function names (they become tool names)
1272
- - Keep functions focused and single-purpose
1273
- - Accept string parameters when possible for better compatibility
1274
- - Return simple types (str, int, float, list, dict) rather than complex objects
1275
- - Use gr.Header for authentication headers when needed
1276
- - Use gr.Progress() for long-running operations
1277
-
1278
- **Multiple Tools Example:**
1279
- ```
1280
- import gradio as gr
1281
-
1282
- def add_numbers(a: str, b: str) -> str:
1283
- \"\"\"
1284
- Add two numbers together.
1285
-
1286
- Args:
1287
- a (str): First number
1288
- b (str): Second number
1289
-
1290
- Returns:
1291
- str: Sum of the two numbers
1292
- \"\"\"
1293
- return str(int(a) + int(b))
1294
-
1295
- def multiply_numbers(a: str, b: str) -> str:
1296
- \"\"\"
1297
- Multiply two numbers.
1298
-
1299
- Args:
1300
- a (str): First number
1301
- b (str): Second number
1302
-
1303
- Returns:
1304
- str: Product of the two numbers
1305
- \"\"\"
1306
- return str(int(a) * int(b))
1307
-
1308
- with gr.Blocks() as demo:
1309
- gr.Markdown("# Math Tools MCP Server")
1310
-
1311
- with gr.Tab("Add"):
1312
- gr.Interface(add_numbers, [gr.Textbox("5"), gr.Textbox("3")], gr.Textbox())
1313
-
1314
- with gr.Tab("Multiply"):
1315
- gr.Interface(multiply_numbers, [gr.Textbox("4"), gr.Textbox("7")], gr.Textbox())
1316
-
1317
- if __name__ == "__main__":
1318
- demo.launch(mcp_server=True)
1319
- ```
1320
-
1321
- **REMEMBER:** If MCP is requested, ALWAYS:
1322
- 1. Set `mcp_server=True` in `.launch()`
1323
- 2. Use `gradio[mcp]` in requirements.txt
1324
- 3. Include complete docstrings with Args sections
1325
- 4. Add type hints to all parameters
1326
-
1327
- ## Complete Gradio API Reference
1328
-
1329
- This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy.
1330
-
1331
- """
1332
-
1333
- # Add FastRTC documentation if available
1334
- if fastrtc_content.strip():
1335
- fastrtc_section = f"""
1336
- ## FastRTC Reference Documentation
1337
-
1338
- When building real-time audio/video applications with Gradio, use this FastRTC reference:
1339
-
1340
- {fastrtc_content}
1341
-
1342
- This reference is automatically synced from https://fastrtc.org/llms.txt to ensure accuracy.
1343
-
1344
- """
1345
- base_prompt += fastrtc_section
1346
- search_prompt += fastrtc_section
1347
-
1348
- # Update the prompts in the prompts module
1349
- final_instructions = """\n\nAlways use the exact function signatures from this API reference and follow modern Gradio patterns.
1350
-
1351
- 🔍 BEFORE GENERATING: Review the conversation history carefully. If the user has imported any model code (InferenceClient, transformers, diffusers), you MUST integrate that code into your Gradio application. Do not generate standalone inference code - create a complete Gradio app that wraps the imported model functionality.
1352
-
1353
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
1354
-
1355
- prompts.GRADIO_SYSTEM_PROMPT = base_prompt + docs_content + final_instructions
1356
- prompts.GRADIO_SYSTEM_PROMPT_WITH_SEARCH = search_prompt + docs_content + final_instructions
1357
-
1358
- def update_json_system_prompts():
1359
- """Update the global JSON system prompts with latest ComfyUI documentation"""
1360
- docs_content = get_comfyui_docs_content()
1361
-
1362
- # Base system prompt for regular JSON
1363
- base_prompt = """You are an expert JSON developer. Generate clean, valid JSON data based on the user's request. Follow JSON syntax rules strictly:
1364
- - Use double quotes for strings
1365
- - No trailing commas
1366
- - Proper nesting and structure
1367
- - Valid data types (string, number, boolean, null, object, array)
1368
-
1369
- Generate ONLY the JSON data requested - no HTML, no applications, no explanations outside the JSON. The output should be pure, valid JSON that can be parsed directly.
1370
-
1371
- """
1372
-
1373
- # Search-enabled system prompt for regular JSON
1374
- search_prompt = """You are an expert JSON developer. You have access to real-time web search. When needed, use web search to find the latest information or data structures for your JSON generation.
1375
-
1376
- Generate clean, valid JSON data based on the user's request. Follow JSON syntax rules strictly:
1377
- - Use double quotes for strings
1378
- - No trailing commas
1379
- - Proper nesting and structure
1380
- - Valid data types (string, number, boolean, null, object, array)
1381
-
1382
- Generate ONLY the JSON data requested - no HTML, no applications, no explanations outside the JSON. The output should be pure, valid JSON that can be parsed directly.
1383
-
1384
- """
1385
-
1386
- # Add ComfyUI documentation if available
1387
- if docs_content.strip():
1388
- comfyui_section = f"""
1389
- ## ComfyUI Reference Documentation
1390
-
1391
- When generating JSON data related to ComfyUI workflows, nodes, or configurations, use this reference:
1392
-
1393
- {docs_content}
1394
-
1395
- This reference is automatically synced from https://docs.comfy.org/llms.txt to ensure accuracy.
1396
-
1397
- """
1398
- base_prompt += comfyui_section
1399
- search_prompt += comfyui_section
1400
-
1401
- # Update the prompts in the prompts module
1402
- prompts.JSON_SYSTEM_PROMPT = base_prompt
1403
- prompts.JSON_SYSTEM_PROMPT_WITH_SEARCH = search_prompt
1404
-
1405
- def get_comfyui_system_prompt():
1406
- """Get ComfyUI-specific system prompt with enhanced guidance"""
1407
- docs_content = get_comfyui_docs_content()
1408
-
1409
- base_prompt = """You are an expert ComfyUI developer. Generate clean, valid JSON workflows for ComfyUI based on the user's request.
1410
-
1411
- ComfyUI workflows are JSON structures that define:
1412
- - Nodes: Individual processing units with specific functions
1413
- - Connections: Links between nodes that define data flow
1414
- - Parameters: Configuration values for each node
1415
- - Inputs/Outputs: Data flow between nodes
1416
-
1417
- Follow JSON syntax rules strictly:
1418
- - Use double quotes for strings
1419
- - No trailing commas
1420
- - Proper nesting and structure
1421
- - Valid data types (string, number, boolean, null, object, array)
1422
-
1423
- Generate ONLY the ComfyUI workflow JSON - no HTML, no applications, no explanations outside the JSON. The output should be a complete, valid ComfyUI workflow that can be loaded directly into ComfyUI.
1424
-
1425
- """
1426
-
1427
- # Add ComfyUI documentation if available
1428
- if docs_content.strip():
1429
- comfyui_section = f"""
1430
- ## ComfyUI Reference Documentation
1431
-
1432
- Use this reference for accurate node types, parameters, and workflow structures:
1433
-
1434
- {docs_content}
1435
-
1436
- This reference is automatically synced from https://docs.comfy.org/llms.txt to ensure accuracy.
1437
-
1438
- """
1439
- base_prompt += comfyui_section
1440
-
1441
- base_prompt += """
1442
- IMPORTANT: Always include "Built with anycoder" as a comment or metadata field in your ComfyUI workflow JSON that references https://huggingface.co/spaces/akhaliq/anycoder
1443
- """
1444
-
1445
- return base_prompt
1446
-
1447
- # Initialize Gradio documentation on startup
1448
- def initialize_gradio_docs():
1449
- """Initialize Gradio documentation on application startup"""
1450
- try:
1451
- update_gradio_system_prompts()
1452
- if should_update_gradio_docs():
1453
- print("🚀 Gradio documentation system initialized (fetched fresh content)")
1454
- else:
1455
- print("🚀 Gradio documentation system initialized (using cached content)")
1456
- except Exception as e:
1457
- print(f"Warning: Failed to initialize Gradio documentation: {e}")
1458
-
1459
- # Initialize ComfyUI documentation on startup
1460
- def initialize_comfyui_docs():
1461
- """Initialize ComfyUI documentation on application startup"""
1462
- try:
1463
- update_json_system_prompts()
1464
- if should_update_comfyui_docs():
1465
- print("🚀 ComfyUI documentation system initialized (fetched fresh content)")
1466
- else:
1467
- print("🚀 ComfyUI documentation system initialized (using cached content)")
1468
- except Exception as e:
1469
- print(f"Warning: Failed to initialize ComfyUI documentation: {e}")
1470
-
1471
- # Initialize FastRTC documentation on startup
1472
- def initialize_fastrtc_docs():
1473
- """Initialize FastRTC documentation on application startup"""
1474
- try:
1475
- # FastRTC docs are integrated into Gradio system prompts
1476
- # So we call update_gradio_system_prompts to include FastRTC content
1477
- update_gradio_system_prompts()
1478
- if should_update_fastrtc_docs():
1479
- print("🚀 FastRTC documentation system initialized (fetched fresh content)")
1480
- else:
1481
- print("🚀 FastRTC documentation system initialized (using cached content)")
1482
- except Exception as e:
1483
- print(f"Warning: Failed to initialize FastRTC documentation: {e}")
1484
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/models.py DELETED
@@ -1,338 +0,0 @@
1
- """
2
- Model inference and client management for AnyCoder.
3
- Handles different model providers and inference clients.
4
- """
5
- import os
6
- from typing import Dict, List, Optional, Tuple
7
- import re
8
- from http import HTTPStatus
9
-
10
- from huggingface_hub import InferenceClient
11
- from openai import OpenAI
12
- from mistralai import Mistral
13
- import dashscope
14
-
15
- from .config import HF_TOKEN, AVAILABLE_MODELS
16
-
17
- # Type definitions
18
- History = List[Dict[str, str]]
19
- Messages = List[Dict[str, str]]
20
-
21
- def get_inference_client(model_id, provider="auto"):
22
- """Return an InferenceClient with provider based on model_id and user selection."""
23
- if model_id == "qwen3-30b-a3b-instruct-2507":
24
- # Use DashScope OpenAI client
25
- return OpenAI(
26
- api_key=os.getenv("DASHSCOPE_API_KEY"),
27
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
28
- )
29
- elif model_id == "qwen3-30b-a3b-thinking-2507":
30
- # Use DashScope OpenAI client for Thinking model
31
- return OpenAI(
32
- api_key=os.getenv("DASHSCOPE_API_KEY"),
33
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
34
- )
35
- elif model_id == "qwen3-coder-30b-a3b-instruct":
36
- # Use DashScope OpenAI client for Coder model
37
- return OpenAI(
38
- api_key=os.getenv("DASHSCOPE_API_KEY"),
39
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
40
- )
41
- elif model_id == "gpt-5":
42
- # Use Poe (OpenAI-compatible) client for GPT-5 model
43
- return OpenAI(
44
- api_key=os.getenv("POE_API_KEY"),
45
- base_url="https://api.poe.com/v1"
46
- )
47
- elif model_id == "gpt-5.1":
48
- # Use Poe (OpenAI-compatible) client for GPT-5.1 model
49
- return OpenAI(
50
- api_key=os.getenv("POE_API_KEY"),
51
- base_url="https://api.poe.com/v1"
52
- )
53
- elif model_id == "gpt-5.1-instant":
54
- # Use Poe (OpenAI-compatible) client for GPT-5.1 Instant model
55
- return OpenAI(
56
- api_key=os.getenv("POE_API_KEY"),
57
- base_url="https://api.poe.com/v1"
58
- )
59
- elif model_id == "gpt-5.1-codex":
60
- # Use Poe (OpenAI-compatible) client for GPT-5.1 Codex model
61
- return OpenAI(
62
- api_key=os.getenv("POE_API_KEY"),
63
- base_url="https://api.poe.com/v1"
64
- )
65
- elif model_id == "gpt-5.1-codex-mini":
66
- # Use Poe (OpenAI-compatible) client for GPT-5.1 Codex Mini model
67
- return OpenAI(
68
- api_key=os.getenv("POE_API_KEY"),
69
- base_url="https://api.poe.com/v1"
70
- )
71
- elif model_id == "grok-4":
72
- # Use Poe (OpenAI-compatible) client for Grok-4 model
73
- return OpenAI(
74
- api_key=os.getenv("POE_API_KEY"),
75
- base_url="https://api.poe.com/v1"
76
- )
77
- elif model_id == "Grok-Code-Fast-1":
78
- # Use Poe (OpenAI-compatible) client for Grok-Code-Fast-1 model
79
- return OpenAI(
80
- api_key=os.getenv("POE_API_KEY"),
81
- base_url="https://api.poe.com/v1"
82
- )
83
- elif model_id == "claude-opus-4.1":
84
- # Use Poe (OpenAI-compatible) client for Claude-Opus-4.1
85
- return OpenAI(
86
- api_key=os.getenv("POE_API_KEY"),
87
- base_url="https://api.poe.com/v1"
88
- )
89
- elif model_id == "claude-sonnet-4.5":
90
- # Use Poe (OpenAI-compatible) client for Claude-Sonnet-4.5
91
- return OpenAI(
92
- api_key=os.getenv("POE_API_KEY"),
93
- base_url="https://api.poe.com/v1"
94
- )
95
- elif model_id == "claude-haiku-4.5":
96
- # Use Poe (OpenAI-compatible) client for Claude-Haiku-4.5
97
- return OpenAI(
98
- api_key=os.getenv("POE_API_KEY"),
99
- base_url="https://api.poe.com/v1"
100
- )
101
- elif model_id == "qwen3-max-preview":
102
- # Use DashScope International OpenAI client for Qwen3 Max Preview
103
- return OpenAI(
104
- api_key=os.getenv("DASHSCOPE_API_KEY"),
105
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
106
- )
107
- elif model_id == "openrouter/sonoma-dusk-alpha":
108
- # Use OpenRouter client for Sonoma Dusk Alpha model
109
- return OpenAI(
110
- api_key=os.getenv("OPENROUTER_API_KEY"),
111
- base_url="https://openrouter.ai/api/v1",
112
- )
113
- elif model_id == "openrouter/sonoma-sky-alpha":
114
- # Use OpenRouter client for Sonoma Sky Alpha model
115
- return OpenAI(
116
- api_key=os.getenv("OPENROUTER_API_KEY"),
117
- base_url="https://openrouter.ai/api/v1",
118
- )
119
- elif model_id == "MiniMaxAI/MiniMax-M2":
120
- # Use HuggingFace InferenceClient with Novita provider for MiniMax M2 model
121
- provider = "novita"
122
- elif model_id == "step-3":
123
- # Use StepFun API client for Step-3 model
124
- return OpenAI(
125
- api_key=os.getenv("STEP_API_KEY"),
126
- base_url="https://api.stepfun.com/v1"
127
- )
128
- elif model_id == "codestral-2508" or model_id == "mistral-medium-2508":
129
- # Use Mistral client for Mistral models
130
- return Mistral(api_key=os.getenv("MISTRAL_API_KEY"))
131
- elif model_id == "gemini-2.5-flash":
132
- # Use Google Gemini (OpenAI-compatible) client
133
- return OpenAI(
134
- api_key=os.getenv("GEMINI_API_KEY"),
135
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
136
- )
137
- elif model_id == "gemini-2.5-pro":
138
- # Use Google Gemini Pro (OpenAI-compatible) client
139
- return OpenAI(
140
- api_key=os.getenv("GEMINI_API_KEY"),
141
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
142
- )
143
- elif model_id == "gemini-flash-latest":
144
- # Use Google Gemini Flash Latest (OpenAI-compatible) client
145
- return OpenAI(
146
- api_key=os.getenv("GEMINI_API_KEY"),
147
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
148
- )
149
- elif model_id == "gemini-flash-lite-latest":
150
- # Use Google Gemini Flash Lite Latest (OpenAI-compatible) client
151
- return OpenAI(
152
- api_key=os.getenv("GEMINI_API_KEY"),
153
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
154
- )
155
- elif model_id == "kimi-k2-turbo-preview":
156
- # Use Moonshot AI (OpenAI-compatible) client for Kimi K2 Turbo (Preview)
157
- return OpenAI(
158
- api_key=os.getenv("MOONSHOT_API_KEY"),
159
- base_url="https://api.moonshot.ai/v1",
160
- )
161
- elif model_id == "moonshotai/Kimi-K2-Thinking":
162
- # Use HuggingFace InferenceClient with Novita provider for Kimi K2 Thinking
163
- provider = "novita"
164
- elif model_id == "stealth-model-1":
165
- # Use stealth model with generic configuration
166
- api_key = os.getenv("STEALTH_MODEL_1_API_KEY")
167
- if not api_key:
168
- raise ValueError("STEALTH_MODEL_1_API_KEY environment variable is required for Carrot model")
169
-
170
- base_url = os.getenv("STEALTH_MODEL_1_BASE_URL")
171
- if not base_url:
172
- raise ValueError("STEALTH_MODEL_1_BASE_URL environment variable is required for Carrot model")
173
-
174
- return OpenAI(
175
- api_key=api_key,
176
- base_url=base_url,
177
- )
178
- elif model_id == "moonshotai/Kimi-K2-Instruct":
179
- provider = "groq"
180
- elif model_id == "deepseek-ai/DeepSeek-V3.1":
181
- provider = "novita"
182
- elif model_id == "deepseek-ai/DeepSeek-V3.1-Terminus":
183
- provider = "novita"
184
- elif model_id == "deepseek-ai/DeepSeek-V3.2-Exp":
185
- provider = "novita"
186
- elif model_id == "zai-org/GLM-4.5":
187
- provider = "fireworks-ai"
188
- elif model_id == "zai-org/GLM-4.6":
189
- # Use auto provider for GLM-4.6, HuggingFace will select best available
190
- provider = "auto"
191
- return InferenceClient(
192
- provider=provider,
193
- api_key=HF_TOKEN,
194
- bill_to="huggingface"
195
- )
196
-
197
- # Helper function to get real model ID for stealth models and special cases
198
- def get_real_model_id(model_id: str) -> str:
199
- """Get the real model ID, checking environment variables for stealth models and handling special model formats"""
200
- if model_id == "stealth-model-1":
201
- # Get the real model ID from environment variable
202
- real_model_id = os.getenv("STEALTH_MODEL_1_ID")
203
- if not real_model_id:
204
- raise ValueError("STEALTH_MODEL_1_ID environment variable is required for Carrot model")
205
-
206
- return real_model_id
207
- elif model_id == "zai-org/GLM-4.6":
208
- # GLM-4.6 requires provider suffix in model string for API calls
209
- return "zai-org/GLM-4.6:zai-org"
210
- return model_id
211
-
212
- # Type definitions
213
- History = List[Tuple[str, str]]
214
- Messages = List[Dict[str, str]]
215
-
216
- def history_to_messages(history: History, system: str) -> Messages:
217
- messages = [{'role': 'system', 'content': system}]
218
- for h in history:
219
- # Handle multimodal content in history
220
- user_content = h[0]
221
- if isinstance(user_content, list):
222
- # Extract text from multimodal content
223
- text_content = ""
224
- for item in user_content:
225
- if isinstance(item, dict) and item.get("type") == "text":
226
- text_content += item.get("text", "")
227
- user_content = text_content if text_content else str(user_content)
228
-
229
- messages.append({'role': 'user', 'content': user_content})
230
- messages.append({'role': 'assistant', 'content': h[1]})
231
- return messages
232
-
233
- def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]:
234
- """Convert history tuples to chatbot message format"""
235
- messages = []
236
- for user_msg, assistant_msg in history:
237
- # Handle multimodal content
238
- if isinstance(user_msg, list):
239
- text_content = ""
240
- for item in user_msg:
241
- if isinstance(item, dict) and item.get("type") == "text":
242
- text_content += item.get("text", "")
243
- user_msg = text_content if text_content else str(user_msg)
244
-
245
- messages.append({"role": "user", "content": user_msg})
246
- messages.append({"role": "assistant", "content": assistant_msg})
247
- return messages
248
-
249
- def strip_tool_call_markers(text):
250
- """Remove TOOL_CALL markers that some LLMs (like Qwen) add to their output."""
251
- if not text:
252
- return text
253
- # Remove [TOOL_CALL] and [/TOOL_CALL] markers
254
- text = re.sub(r'\[/?TOOL_CALL\]', '', text, flags=re.IGNORECASE)
255
- # Remove standalone }} that appears with tool calls
256
- # Only remove if it's on its own line or at the end
257
- text = re.sub(r'^\s*\}\}\s*$', '', text, flags=re.MULTILINE)
258
- return text.strip()
259
-
260
- def remove_code_block(text):
261
- # First strip any tool call markers
262
- text = strip_tool_call_markers(text)
263
-
264
- # Try to match code blocks with language markers
265
- patterns = [
266
- r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
267
- r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
268
- r'```([\s\S]+?)```' # Match code blocks without line breaks
269
- ]
270
- for pattern in patterns:
271
- match = re.search(pattern, text, re.DOTALL)
272
- if match:
273
- extracted = match.group(1).strip()
274
- # Remove a leading language marker line (e.g., 'python') if present
275
- if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
276
- return extracted.split('\n', 1)[1] if '\n' in extracted else ''
277
- # If HTML markup starts later in the block (e.g., Poe injected preface), trim to first HTML root
278
- html_root_idx = None
279
- for tag in ['<!DOCTYPE html', '<html']:
280
- idx = extracted.find(tag)
281
- if idx != -1:
282
- html_root_idx = idx if html_root_idx is None else min(html_root_idx, idx)
283
- if html_root_idx is not None and html_root_idx > 0:
284
- return extracted[html_root_idx:].strip()
285
- return extracted
286
- # If no code block is found, check if the entire text is HTML
287
- stripped = text.strip()
288
- if stripped.startswith('<!DOCTYPE html>') or stripped.startswith('<html') or stripped.startswith('<'):
289
- # If HTML root appears later (e.g., Poe preface), trim to first HTML root
290
- for tag in ['<!DOCTYPE html', '<html']:
291
- idx = stripped.find(tag)
292
- if idx > 0:
293
- return stripped[idx:].strip()
294
- return stripped
295
- # Special handling for python: remove python marker
296
- if text.strip().startswith('```python'):
297
- return text.strip()[9:-3].strip()
298
- # Remove a leading language marker line if present (fallback)
299
- lines = text.strip().split('\n', 1)
300
- if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
301
- return lines[1] if len(lines) > 1 else ''
302
- return text.strip()
303
-
304
- ## React CDN compatibility fixer removed per user preference
305
-
306
- def strip_thinking_tags(text: str) -> str:
307
- """Strip <think> tags and [TOOL_CALL] markers from streaming output."""
308
- if not text:
309
- return text
310
- # Remove <think> opening tags
311
- text = re.sub(r'<think>', '', text, flags=re.IGNORECASE)
312
- # Remove </think> closing tags
313
- text = re.sub(r'</think>', '', text, flags=re.IGNORECASE)
314
- # Remove [TOOL_CALL] markers
315
- text = re.sub(r'\[/?TOOL_CALL\]', '', text, flags=re.IGNORECASE)
316
- return text
317
-
318
- def strip_placeholder_thinking(text: str) -> str:
319
- """Remove placeholder 'Thinking...' status lines from streamed text."""
320
- if not text:
321
- return text
322
- # Matches lines like: "Thinking..." or "Thinking... (12s elapsed)"
323
- return re.sub(r"(?mi)^[\t ]*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?[\t ]*$\n?", "", text)
324
-
325
- def is_placeholder_thinking_only(text: str) -> bool:
326
- """Return True if text contains only 'Thinking...' placeholder lines (with optional elapsed)."""
327
- if not text:
328
- return False
329
- stripped = text.strip()
330
- if not stripped:
331
- return False
332
- return re.fullmatch(r"(?s)(?:\s*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?\s*)+", stripped) is not None
333
-
334
- def extract_last_thinking_line(text: str) -> str:
335
- """Extract the last 'Thinking...' line to display as status."""
336
- matches = list(re.finditer(r"Thinking\.\.\.(?:\s*\(\d+s elapsed\))?", text))
337
- return matches[-1].group(0) if matches else "Thinking..."
338
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/parsers.py DELETED
@@ -1,1111 +0,0 @@
1
- """
2
- Code parsing and formatting utilities for different frameworks.
3
- Handles parsing of transformers.js, React, multi-file HTML, Streamlit, and Gradio code.
4
- """
5
- import re
6
- import os
7
- import json
8
- import base64
9
- from typing import Dict, List, Optional, Tuple
10
- from bs4 import BeautifulSoup
11
- import html
12
-
13
- from .config import SEARCH_START, DIVIDER, REPLACE_END
14
-
15
- # Type definitions
16
- History = List[Dict[str, str]]
17
-
18
- def strip_tool_call_markers(text):
19
- """Remove TOOL_CALL markers and thinking tags that some LLMs add to their output."""
20
- if not text:
21
- return text
22
- # Remove [TOOL_CALL] and [/TOOL_CALL] markers
23
- text = re.sub(r'\[/?TOOL_CALL\]', '', text, flags=re.IGNORECASE)
24
- # Remove <think> and </think> tags and their content
25
- text = re.sub(r'<think>[\s\S]*?</think>', '', text, flags=re.IGNORECASE)
26
- # Remove any remaining unclosed <think> tags at the start
27
- text = re.sub(r'^<think>[\s\S]*?(?=\n|$)', '', text, flags=re.IGNORECASE | re.MULTILINE)
28
- # Remove any remaining </think> tags
29
- text = re.sub(r'</think>', '', text, flags=re.IGNORECASE)
30
- # Remove standalone }} that appears with tool calls
31
- # Only remove if it's on its own line or at the end
32
- text = re.sub(r'^\s*\}\}\s*$', '', text, flags=re.MULTILINE)
33
- return text.strip()
34
-
35
- def remove_code_block(text):
36
- # First strip any tool call markers
37
- text = strip_tool_call_markers(text)
38
-
39
- # Try to match code blocks with language markers
40
- patterns = [
41
- r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
42
- r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
43
- r'```([\s\S]+?)```' # Match code blocks without line breaks
44
- ]
45
- for pattern in patterns:
46
- match = re.search(pattern, text, re.DOTALL)
47
- if match:
48
- extracted = match.group(1).strip()
49
- # Remove a leading language marker line (e.g., 'python') if present
50
- if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
51
- return extracted.split('\n', 1)[1] if '\n' in extracted else ''
52
- # If HTML markup starts later in the block (e.g., Poe injected preface), trim to first HTML root
53
- html_root_idx = None
54
- for tag in ['<!DOCTYPE html', '<html']:
55
- idx = extracted.find(tag)
56
- if idx != -1:
57
- html_root_idx = idx if html_root_idx is None else min(html_root_idx, idx)
58
- if html_root_idx is not None and html_root_idx > 0:
59
- return extracted[html_root_idx:].strip()
60
- return extracted
61
- # If no code block is found, check if the entire text is HTML
62
- stripped = text.strip()
63
- if stripped.startswith('<!DOCTYPE html>') or stripped.startswith('<html') or stripped.startswith('<'):
64
- # If HTML root appears later (e.g., Poe preface), trim to first HTML root
65
- for tag in ['<!DOCTYPE html', '<html']:
66
- idx = stripped.find(tag)
67
- if idx > 0:
68
- return stripped[idx:].strip()
69
- return stripped
70
- # Special handling for python: remove python marker
71
- if text.strip().startswith('```python'):
72
- return text.strip()[9:-3].strip()
73
- # Remove a leading language marker line if present (fallback)
74
- lines = text.strip().split('\n', 1)
75
- if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
76
- return lines[1] if len(lines) > 1 else ''
77
- return text.strip()
78
-
79
- ## React CDN compatibility fixer removed per user preference
80
-
81
- def strip_placeholder_thinking(text: str) -> str:
82
- """Remove placeholder 'Thinking...' status lines from streamed text."""
83
- if not text:
84
- return text
85
- # Matches lines like: "Thinking..." or "Thinking... (12s elapsed)"
86
- return re.sub(r"(?mi)^[\t ]*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?[\t ]*$\n?", "", text)
87
-
88
- def is_placeholder_thinking_only(text: str) -> bool:
89
- """Return True if text contains only 'Thinking...' placeholder lines (with optional elapsed)."""
90
- if not text:
91
- return False
92
- stripped = text.strip()
93
- if not stripped:
94
- return False
95
- return re.fullmatch(r"(?s)(?:\s*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?\s*)+", stripped) is not None
96
-
97
- def extract_last_thinking_line(text: str) -> str:
98
- """Extract the last 'Thinking...' line to display as status."""
99
- matches = list(re.finditer(r"Thinking\.\.\.(?:\s*\(\d+s elapsed\))?", text))
100
- return matches[-1].group(0) if matches else "Thinking..."
101
-
102
- def parse_transformers_js_output(text):
103
- """Parse transformers.js output and extract the three files (index.html, index.js, style.css)"""
104
- files = {
105
- 'index.html': '',
106
- 'index.js': '',
107
- 'style.css': ''
108
- }
109
-
110
- # Multiple patterns to match the three code blocks with different variations
111
- html_patterns = [
112
- r'```html\s*\n([\s\S]*?)(?:```|\Z)',
113
- r'```htm\s*\n([\s\S]*?)(?:```|\Z)',
114
- r'```\s*(?:index\.html|html)\s*\n([\s\S]*?)(?:```|\Z)'
115
- ]
116
-
117
- js_patterns = [
118
- r'```javascript\s*\n([\s\S]*?)(?:```|\Z)',
119
- r'```js\s*\n([\s\S]*?)(?:```|\Z)',
120
- r'```\s*(?:index\.js|javascript|js)\s*\n([\s\S]*?)(?:```|\Z)'
121
- ]
122
-
123
- css_patterns = [
124
- r'```css\s*\n([\s\S]*?)(?:```|\Z)',
125
- r'```\s*(?:style\.css|css)\s*\n([\s\S]*?)(?:```|\Z)'
126
- ]
127
-
128
- # Extract HTML content
129
- for pattern in html_patterns:
130
- html_match = re.search(pattern, text, re.IGNORECASE)
131
- if html_match:
132
- files['index.html'] = html_match.group(1).strip()
133
- break
134
-
135
- # Extract JavaScript content
136
- for pattern in js_patterns:
137
- js_match = re.search(pattern, text, re.IGNORECASE)
138
- if js_match:
139
- files['index.js'] = js_match.group(1).strip()
140
- break
141
-
142
- # Extract CSS content
143
- for pattern in css_patterns:
144
- css_match = re.search(pattern, text, re.IGNORECASE)
145
- if css_match:
146
- files['style.css'] = css_match.group(1).strip()
147
- break
148
-
149
- # Fallback: support === index.html === format if any file is missing
150
- if not (files['index.html'] and files['index.js'] and files['style.css']):
151
- # Use regex to extract sections
152
- html_fallback = re.search(r'===\s*index\.html\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
153
- js_fallback = re.search(r'===\s*index\.js\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
154
- css_fallback = re.search(r'===\s*style\.css\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
155
-
156
- if html_fallback:
157
- files['index.html'] = html_fallback.group(1).strip()
158
- if js_fallback:
159
- files['index.js'] = js_fallback.group(1).strip()
160
- if css_fallback:
161
- files['style.css'] = css_fallback.group(1).strip()
162
-
163
- # Additional fallback: extract from numbered sections or file headers
164
- if not (files['index.html'] and files['index.js'] and files['style.css']):
165
- # Try patterns like "1. index.html:" or "**index.html**"
166
- patterns = [
167
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.html(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.html'),
168
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.js(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.js'),
169
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)style\.css(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'style.css')
170
- ]
171
-
172
- for pattern, file_key in patterns:
173
- if not files[file_key]:
174
- match = re.search(pattern, text, re.IGNORECASE | re.MULTILINE)
175
- if match:
176
- # Clean up the content by removing any code block markers
177
- content = match.group(1).strip()
178
- content = re.sub(r'^```\w*\s*\n', '', content)
179
- content = re.sub(r'\n```\s*$', '', content)
180
- files[file_key] = content.strip()
181
-
182
- return files
183
-
184
- def format_transformers_js_output(files):
185
- """Format the three files into a single display string"""
186
- output = []
187
- output.append("=== index.html ===")
188
- output.append(files['index.html'])
189
- output.append("\n=== index.js ===")
190
- output.append(files['index.js'])
191
- output.append("\n=== style.css ===")
192
- output.append(files['style.css'])
193
- return '\n'.join(output)
194
-
195
- def build_transformers_inline_html(files: dict) -> str:
196
- """Merge transformers.js three-file output into a single self-contained HTML document.
197
-
198
- - Inlines style.css into a <style> tag
199
- - Inlines index.js into a <script type="module"> tag
200
- - Rewrites ESM imports for transformers.js to a stable CDN URL so it works in data: iframes
201
- """
202
- import re as _re
203
-
204
- html = files.get('index.html') or ''
205
- js = files.get('index.js') or ''
206
- css = files.get('style.css') or ''
207
-
208
- # Normalize JS imports to CDN (handle both @huggingface/transformers and legacy @xenova/transformers)
209
- cdn_url = "https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.7.3"
210
-
211
- def _normalize_imports(_code: str) -> str:
212
- if not _code:
213
- return _code or ""
214
- _code = _re.sub(r"from\s+['\"]@huggingface/transformers['\"]", f"from '{cdn_url}'", _code)
215
- _code = _re.sub(r"from\s+['\"]@xenova/transformers['\"]", f"from '{cdn_url}'", _code)
216
- _code = _re.sub(r"from\s+['\"]https://cdn.jsdelivr.net/npm/@huggingface/transformers@[^'\"]+['\"]", f"from '{cdn_url}'", _code)
217
- _code = _re.sub(r"from\s+['\"]https://cdn.jsdelivr.net/npm/@xenova/transformers@[^'\"]+['\"]", f"from '{cdn_url}'", _code)
218
- return _code
219
-
220
- # Extract inline module scripts from index.html, then merge into JS so we control imports
221
- inline_modules = []
222
- try:
223
- for _m in _re.finditer(r"<script\\b[^>]*type=[\"\']module[\"\'][^>]*>([\s\S]*?)</script>", html, flags=_re.IGNORECASE):
224
- inline_modules.append(_m.group(1))
225
- if inline_modules:
226
- html = _re.sub(r"<script\\b[^>]*type=[\"\']module[\"\'][^>]*>[\s\S]*?</script>\\s*", "", html, flags=_re.IGNORECASE)
227
- # Normalize any external module script URLs that load transformers to a single CDN version (keep the tag)
228
- html = _re.sub(r"https://cdn\.jsdelivr\.net/npm/@huggingface/transformers@[^'\"<>\s]+", cdn_url, html)
229
- html = _re.sub(r"https://cdn\.jsdelivr\.net/npm/@xenova/transformers@[^'\"<>\s]+", cdn_url, html)
230
- except Exception:
231
- # Best-effort; continue
232
- pass
233
-
234
- # Merge inline module code with provided index.js, then normalize imports
235
- combined_js_parts = []
236
- if inline_modules:
237
- combined_js_parts.append("\n\n".join(inline_modules))
238
- if js:
239
- combined_js_parts.append(js)
240
- js = "\n\n".join([p for p in combined_js_parts if (p and p.strip())])
241
- js = _normalize_imports(js)
242
-
243
- # Prepend a small prelude to reduce persistent caching during preview
244
- # Also ensure a global `transformers` namespace exists for apps relying on it
245
- # Note: importing env alongside user's own imports is fine in ESM
246
- if js.strip():
247
- prelude = (
248
- f"import {{ env }} from '{cdn_url}';\n"
249
- "try { env.useBrowserCache = false; } catch (e) {}\n"
250
- "try { if (env && env.backends && env.backends.onnx && env.backends.onnx.wasm) { env.backends.onnx.wasm.numThreads = 1; env.backends.onnx.wasm.proxy = false; } } catch (e) {}\n"
251
- f"(async () => {{ try {{ if (typeof globalThis.transformers === 'undefined') {{ const m = await import('{cdn_url}'); globalThis.transformers = m; }} }} catch (e) {{}} }})();\n"
252
- )
253
- js = prelude + js
254
-
255
- # If index.html missing or doesn't look like a full document, create a minimal shell
256
- doc = html.strip()
257
- if not doc or ('<html' not in doc.lower()):
258
- doc = (
259
- "<!DOCTYPE html>\n"
260
- "<html>\n<head>\n<meta charset=\"UTF-8\">\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\n<title>Transformers.js App</title>\n</head>\n"
261
- "<body>\n<div id=\"app\"></div>\n</body>\n</html>"
262
- )
263
-
264
- # Remove local references to style.css and index.js to avoid duplicates when inlining
265
- doc = _re.sub(r"<link[^>]+href=\"[^\"]*style\.css\"[^>]*>\s*", "", doc, flags=_re.IGNORECASE)
266
- doc = _re.sub(r"<script[^>]+src=\"[^\"]*index\.js\"[^>]*>\s*</script>\s*", "", doc, flags=_re.IGNORECASE)
267
-
268
- # Inline CSS: insert before </head> or create a <head>
269
- style_tag = f"<style>\n{css}\n</style>" if css else ""
270
- if style_tag:
271
- if '</head>' in doc.lower():
272
- # Preserve original casing by finding closing head case-insensitively
273
- match = _re.search(r"</head>", doc, flags=_re.IGNORECASE)
274
- if match:
275
- idx = match.start()
276
- doc = doc[:idx] + style_tag + doc[idx:]
277
- else:
278
- # No head; insert at top of body
279
- match = _re.search(r"<body[^>]*>", doc, flags=_re.IGNORECASE)
280
- if match:
281
- idx = match.end()
282
- doc = doc[:idx] + "\n" + style_tag + doc[idx:]
283
- else:
284
- # Append at beginning
285
- doc = style_tag + doc
286
-
287
- # Inline JS: insert before </body>
288
- script_tag = f"<script type=\"module\">\n{js}\n</script>" if js else ""
289
- # Lightweight debug console overlay to surface runtime errors inside the iframe
290
- debug_overlay = (
291
- "<style>\n"
292
- "#anycoder-debug{position:fixed;left:0;right:0;bottom:0;max-height:45%;overflow:auto;"
293
- "background:rgba(0,0,0,.85);color:#9eff9e;padding:.5em;font:12px/1.4 monospace;z-index:2147483647;display:none}"
294
- "#anycoder-debug pre{margin:0;white-space:pre-wrap;word-break:break-word}"
295
- "</style>\n"
296
- "<div id=\"anycoder-debug\"></div>\n"
297
- "<script>\n"
298
- "(function(){\n"
299
- " const el = document.getElementById('anycoder-debug');\n"
300
- " function show(){ if(el && el.style.display!=='block'){ el.style.display='block'; } }\n"
301
- " function log(msg){ try{ show(); const pre=document.createElement('pre'); pre.textContent=msg; el.appendChild(pre);}catch(e){} }\n"
302
- " const origError = console.error.bind(console);\n"
303
- " console.error = function(){ origError.apply(console, arguments); try{ log('console.error: ' + Array.from(arguments).map(a=>{try{return (typeof a==='string')?a:JSON.stringify(a);}catch(e){return String(a);}}).join(' ')); }catch(e){} };\n"
304
- " window.addEventListener('error', e => { log('window.onerror: ' + (e && e.message ? e.message : 'Unknown error')); });\n"
305
- " window.addEventListener('unhandledrejection', e => { try{ const r=e && e.reason; log('unhandledrejection: ' + (r && (r.message || JSON.stringify(r)))); }catch(err){ log('unhandledrejection'); } });\n"
306
- "})();\n"
307
- "</script>"
308
- )
309
- # Cleanup script to clear Cache Storage and IndexedDB on unload to free model weights
310
- cleanup_tag = (
311
- "<script>\n"
312
- "(function(){\n"
313
- " function cleanup(){\n"
314
- " try { if (window.caches && caches.keys) { caches.keys().then(keys => keys.forEach(k => caches.delete(k))); } } catch(e){}\n"
315
- " try { if (window.indexedDB && indexedDB.databases) { indexedDB.databases().then(dbs => dbs.forEach(db => db && db.name && indexedDB.deleteDatabase(db.name))); } } catch(e){}\n"
316
- " }\n"
317
- " window.addEventListener('pagehide', cleanup, { once: true });\n"
318
- " window.addEventListener('beforeunload', cleanup, { once: true });\n"
319
- "})();\n"
320
- "</script>"
321
- )
322
- if script_tag:
323
- match = _re.search(r"</body>", doc, flags=_re.IGNORECASE)
324
- if match:
325
- idx = match.start()
326
- doc = doc[:idx] + debug_overlay + script_tag + cleanup_tag + doc[idx:]
327
- else:
328
- # Append at end
329
- doc = doc + debug_overlay + script_tag + cleanup_tag
330
-
331
- return doc
332
-
333
- def send_transformers_to_sandbox(files: dict) -> str:
334
- """Build a self-contained HTML document from transformers.js files and return an iframe preview."""
335
- merged_html = build_transformers_inline_html(files)
336
- return send_to_sandbox(merged_html)
337
-
338
- def parse_multipage_html_output(text: str) -> Dict[str, str]:
339
- """Parse multi-page HTML output formatted as repeated "=== filename ===" sections.
340
-
341
- Returns a mapping of filename → file content. Supports nested paths like assets/css/styles.css.
342
- If HTML content appears before the first === marker, it's treated as index.html.
343
- """
344
- if not text:
345
- return {}
346
- # First, strip any markdown fences
347
- cleaned = remove_code_block(text)
348
- files: Dict[str, str] = {}
349
- import re as _re
350
-
351
- # Check if there's content before the first === marker
352
- first_marker_match = _re.search(r"^===\s*([^=\n]+?)\s*===", cleaned, _re.MULTILINE)
353
- if first_marker_match:
354
- # There's content before the first marker
355
- first_marker_pos = first_marker_match.start()
356
- if first_marker_pos > 0:
357
- leading_content = cleaned[:first_marker_pos].strip()
358
- # Check if it looks like HTML content
359
- if leading_content and ('<!DOCTYPE' in leading_content or '<html' in leading_content or leading_content.startswith('<')):
360
- files['index.html'] = leading_content
361
-
362
- # Now parse the rest with === markers
363
- remaining_text = cleaned[first_marker_pos:] if first_marker_pos > 0 else cleaned
364
- pattern = _re.compile(r"^===\s*([^=\n]+?)\s*===\s*\n([\s\S]*?)(?=\n===\s*[^=\n]+?\s*===|\Z)", _re.MULTILINE)
365
- for m in pattern.finditer(remaining_text):
366
- name = m.group(1).strip()
367
- content = m.group(2).strip()
368
- # Remove accidental trailing fences if present
369
- content = _re.sub(r"^```\w*\s*\n|\n```\s*$", "", content)
370
- files[name] = content
371
- else:
372
- # No === markers found, try standard pattern matching
373
- pattern = _re.compile(r"^===\s*([^=\n]+?)\s*===\s*\n([\s\S]*?)(?=\n===\s*[^=\n]+?\s*===|\Z)", _re.MULTILINE)
374
- for m in pattern.finditer(cleaned):
375
- name = m.group(1).strip()
376
- content = m.group(2).strip()
377
- # Remove accidental trailing fences if present
378
- content = _re.sub(r"^```\w*\s*\n|\n```\s*$", "", content)
379
- files[name] = content
380
-
381
- return files
382
-
383
- def format_multipage_output(files: Dict[str, str]) -> str:
384
- """Format a dict of files back into === filename === sections.
385
-
386
- Ensures `index.html` appears first if present; others follow sorted by path.
387
- """
388
- if not isinstance(files, dict) or not files:
389
- return ""
390
- ordered_paths = []
391
- if 'index.html' in files:
392
- ordered_paths.append('index.html')
393
- for path in sorted(files.keys()):
394
- if path == 'index.html':
395
- continue
396
- ordered_paths.append(path)
397
- parts: list[str] = []
398
- for path in ordered_paths:
399
- parts.append(f"=== {path} ===")
400
- # Avoid trailing extra newlines to keep blocks compact
401
- parts.append((files.get(path) or '').rstrip())
402
- return "\n".join(parts)
403
-
404
- def validate_and_autofix_files(files: Dict[str, str]) -> Dict[str, str]:
405
- """Ensure minimal contract for multi-file sites; auto-fix missing pieces.
406
-
407
- Rules:
408
- - Ensure at least one HTML entrypoint (index.html). If none, synthesize a simple index.html linking discovered pages.
409
- - For each HTML file, ensure referenced local assets exist in files; if missing, add minimal stubs.
410
- - Normalize relative paths (strip leading '/').
411
- """
412
- if not isinstance(files, dict) or not files:
413
- return files or {}
414
- import re as _re
415
-
416
- normalized: Dict[str, str] = {}
417
- for k, v in files.items():
418
- safe_key = k.strip().lstrip('/')
419
- normalized[safe_key] = v
420
-
421
- html_files = [p for p in normalized.keys() if p.lower().endswith('.html')]
422
- has_index = 'index.html' in normalized
423
-
424
- # If no index.html but some HTML pages exist, create a simple hub index linking to them
425
- if not has_index and html_files:
426
- links = '\n'.join([f"<li><a href=\"{p}\">{p}</a></li>" for p in html_files])
427
- normalized['index.html'] = (
428
- "<!DOCTYPE html>\n<html lang=\"en\">\n<head>\n<meta charset=\"utf-8\"/>\n"
429
- "<meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"/>\n"
430
- "<title>Site Index</title>\n</head>\n<body>\n<h1>Site</h1>\n<ul>\n"
431
- + links + "\n</ul>\n</body>\n</html>"
432
- )
433
-
434
- # Collect references from HTML files
435
- asset_refs: set[str] = set()
436
- link_href = _re.compile(r"<link[^>]+href=\"([^\"]+)\"")
437
- script_src = _re.compile(r"<script[^>]+src=\"([^\"]+)\"")
438
- img_src = _re.compile(r"<img[^>]+src=\"([^\"]+)\"")
439
- a_href = _re.compile(r"<a[^>]+href=\"([^\"]+)\"")
440
-
441
- for path, content in list(normalized.items()):
442
- if not path.lower().endswith('.html'):
443
- continue
444
- for patt in (link_href, script_src, img_src, a_href):
445
- for m in patt.finditer(content or ""):
446
- ref = (m.group(1) or "").strip()
447
- if not ref or ref.startswith('http://') or ref.startswith('https://') or ref.startswith('data:') or '#' in ref:
448
- continue
449
- asset_refs.add(ref.lstrip('/'))
450
-
451
- # Add minimal stubs for missing local references (CSS/JS/pages only, not images)
452
- for ref in list(asset_refs):
453
- if ref not in normalized:
454
- if ref.lower().endswith('.css'):
455
- normalized[ref] = "/* generated stub */\n"
456
- elif ref.lower().endswith('.js'):
457
- normalized[ref] = "// generated stub\n"
458
- elif ref.lower().endswith('.html'):
459
- normalized[ref] = (
460
- "<!DOCTYPE html>\n<html lang=\"en\">\n<head><meta charset=\"utf-8\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"/><title>Page</title></head>\n"
461
- "<body><main><h1>Placeholder page</h1><p>This page was auto-created to satisfy an internal link.</p></main></body>\n</html>"
462
- )
463
- # Note: We no longer create placeholder image files automatically
464
- # This prevents unwanted SVG stub files from being generated during image generation
465
-
466
- return normalized
467
- def inline_multipage_into_single_preview(files: Dict[str, str]) -> str:
468
- """Inline local CSS/JS referenced by index.html for preview inside a data: iframe.
469
-
470
- - Uses index.html as the base document
471
- - Inlines <link href="..."> if the target exists in files
472
- - Inlines <script src="..."> if the target exists in files
473
- - Leaves other links (e.g., about.html) untouched; preview covers the home page
474
- """
475
- import re as _re
476
- html = files.get('index.html', '')
477
- if not html:
478
- return ""
479
- doc = html
480
- # Inline CSS links that point to known files
481
- def _inline_css(match):
482
- href = match.group(1)
483
- if href in files:
484
- return f"<style>\n{files[href]}\n</style>"
485
- return match.group(0)
486
- doc = _re.sub(r"<link[^>]+href=\"([^\"]+)\"[^>]*/?>", _inline_css, doc, flags=_re.IGNORECASE)
487
-
488
- # Inline JS scripts that point to known files
489
- def _inline_js(match):
490
- src = match.group(1)
491
- if src in files:
492
- return f"<script>\n{files[src]}\n</script>"
493
- return match.group(0)
494
- doc = _re.sub(r"<script[^>]+src=\"([^\"]+)\"[^>]*>\s*</script>", _inline_js, doc, flags=_re.IGNORECASE)
495
-
496
- # Inject a lightweight in-iframe client-side navigator to load other HTML files
497
- try:
498
- import json as _json
499
- import base64 as _b64
500
- import re as _re
501
- html_pages = {k: v for k, v in files.items() if k.lower().endswith('.html')}
502
- # Ensure index.html entry restores the current body's HTML
503
- _m_body = _re.search(r"<body[^>]*>([\s\S]*?)</body>", doc, flags=_re.IGNORECASE)
504
- _index_body = _m_body.group(1) if _m_body else doc
505
- html_pages['index.html'] = _index_body
506
- encoded = _b64.b64encode(_json.dumps(html_pages).encode('utf-8')).decode('ascii')
507
- nav_script = (
508
- "<script>\n" # Simple client-side loader for internal links
509
- "(function(){\n"
510
- f" const MP_FILES = JSON.parse(atob('{encoded}'));\n"
511
- " function extractBody(html){\n"
512
- " try {\n"
513
- " const doc = new DOMParser().parseFromString(html, 'text/html');\n"
514
- " const title = doc.querySelector('title'); if (title) document.title = title.textContent || document.title;\n"
515
- " return doc.body ? doc.body.innerHTML : html;\n"
516
- " } catch(e){ return html; }\n"
517
- " }\n"
518
- " function loadPage(path){\n"
519
- " if (!MP_FILES[path]) return false;\n"
520
- " const bodyHTML = extractBody(MP_FILES[path]);\n"
521
- " document.body.innerHTML = bodyHTML;\n"
522
- " attach();\n"
523
- " try { history.replaceState({}, '', '#'+path); } catch(e){}\n"
524
- " return true;\n"
525
- " }\n"
526
- " function clickHandler(e){\n"
527
- " const a = e.target && e.target.closest ? e.target.closest('a') : null;\n"
528
- " if (!a) return;\n"
529
- " const href = a.getAttribute('href') || '';\n"
530
- " if (!href || href.startsWith('#') || /^https?:/i.test(href) || href.startsWith('mailto:') || href.startsWith('tel:')) return;\n"
531
- " const clean = href.split('#')[0].split('?')[0];\n"
532
- " if (MP_FILES[clean]) { e.preventDefault(); loadPage(clean); }\n"
533
- " }\n"
534
- " function attach(){ document.removeEventListener('click', clickHandler, true); document.addEventListener('click', clickHandler, true); }\n"
535
- " document.addEventListener('DOMContentLoaded', function(){ attach(); const initial = (location.hash||'').slice(1); if (initial && MP_FILES[initial]) loadPage(initial); }, { once:true });\n"
536
- "})();\n"
537
- "</script>"
538
- )
539
- m = _re.search(r"</body>", doc, flags=_re.IGNORECASE)
540
- if m:
541
- i = m.start()
542
- doc = doc[:i] + nav_script + doc[i:]
543
- else:
544
- doc = doc + nav_script
545
- except Exception:
546
- # Non-fatal in preview
547
- pass
548
-
549
- return doc
550
-
551
- def extract_html_document(text: str) -> str:
552
- """Return substring starting from the first <!DOCTYPE html> or <html> if present, else original text.
553
-
554
- This ignores prose or planning notes before the actual HTML so previews don't break.
555
- """
556
- if not text:
557
- return text
558
- lower = text.lower()
559
- idx = lower.find("<!doctype html")
560
- if idx == -1:
561
- idx = lower.find("<html")
562
- return text[idx:] if idx != -1 else text
563
-
564
-
565
- def parse_react_output(text):
566
- """Parse React/Next.js output to extract individual files.
567
-
568
- Supports multi-file sections using === filename === sections.
569
- """
570
- if not text:
571
- return {}
572
-
573
- # Use the generic multipage parser
574
- try:
575
- files = parse_multipage_html_output(text) or {}
576
- except Exception:
577
- files = {}
578
-
579
- return files if isinstance(files, dict) and files else {}
580
-
581
-
582
- def history_render(history: History):
583
- return gr.update(visible=True), history
584
-
585
- def clear_history():
586
- return [], [], [] # Empty lists for history, history_output, and chat_history
587
-
588
- def create_multimodal_message(text, image=None):
589
- """Create a chat message. For broad provider compatibility, always return content as a string.
590
-
591
- Some providers (e.g., Hugging Face router endpoints like Cerebras) expect `content` to be a string,
592
- not a list of typed parts. To avoid 422 validation errors, we inline a brief note when an image is provided.
593
- """
594
- if image is None:
595
- return {"role": "user", "content": text}
596
- # Keep providers happy: avoid structured multimodal payloads; add a short note instead
597
- # If needed, this can be enhanced per-model with proper multimodal schemas.
598
- return {"role": "user", "content": f"{text}\n\n[An image was provided as reference.]"}
599
- def apply_search_replace_changes(original_content: str, changes_text: str) -> str:
600
- """Apply search/replace changes to content (HTML, Python, etc.)"""
601
- if not changes_text.strip():
602
- return original_content
603
-
604
- # If the model didn't use the block markers, try a CSS-rule fallback where
605
- # provided blocks like `.selector { ... }` replace matching CSS rules.
606
- if (SEARCH_START not in changes_text) and (DIVIDER not in changes_text) and (REPLACE_END not in changes_text):
607
- try:
608
- import re # Local import to avoid global side effects
609
- updated_content = original_content
610
- replaced_any_rule = False
611
- # Find CSS-like rule blocks in the changes_text
612
- # This is a conservative matcher that looks for `selector { ... }`
613
- css_blocks = re.findall(r"([^{]+)\{([\s\S]*?)\}", changes_text, flags=re.MULTILINE)
614
- for selector_raw, body_raw in css_blocks:
615
- selector = selector_raw.strip()
616
- body = body_raw.strip()
617
- if not selector:
618
- continue
619
- # Build a regex to find the existing rule for this selector
620
- # Capture opening `{` and closing `}` to preserve them; replace inner body.
621
- pattern = re.compile(rf"({re.escape(selector)}\s*\{{)([\s\S]*?)(\}})")
622
- def _replace_rule(match):
623
- nonlocal replaced_any_rule
624
- replaced_any_rule = True
625
- prefix, existing_body, suffix = match.groups()
626
- # Preserve indentation of the existing first body line if present
627
- first_line_indent = ""
628
- for line in existing_body.splitlines():
629
- stripped = line.lstrip(" \t")
630
- if stripped:
631
- first_line_indent = line[: len(line) - len(stripped)]
632
- break
633
- # Re-indent provided body with the detected indent
634
- if body:
635
- new_body_lines = [first_line_indent + line if line.strip() else line for line in body.splitlines()]
636
- new_body_text = "\n" + "\n".join(new_body_lines) + "\n"
637
- else:
638
- new_body_text = existing_body # If empty body provided, keep existing
639
- return f"{prefix}{new_body_text}{suffix}"
640
- updated_content, num_subs = pattern.subn(_replace_rule, updated_content, count=1)
641
- if replaced_any_rule:
642
- return updated_content
643
- except Exception:
644
- # Fallback silently to the standard block-based application
645
- pass
646
-
647
- # Split the changes text into individual search/replace blocks
648
- blocks = []
649
- current_block = ""
650
- lines = changes_text.split('\n')
651
-
652
- for line in lines:
653
- if line.strip() == SEARCH_START:
654
- if current_block.strip():
655
- blocks.append(current_block.strip())
656
- current_block = line + '\n'
657
- elif line.strip() == REPLACE_END:
658
- current_block += line + '\n'
659
- blocks.append(current_block.strip())
660
- current_block = ""
661
- else:
662
- current_block += line + '\n'
663
-
664
- if current_block.strip():
665
- blocks.append(current_block.strip())
666
-
667
- modified_content = original_content
668
-
669
- for block in blocks:
670
- if not block.strip():
671
- continue
672
-
673
- # Parse the search/replace block
674
- lines = block.split('\n')
675
- search_lines = []
676
- replace_lines = []
677
- in_search = False
678
- in_replace = False
679
-
680
- for line in lines:
681
- if line.strip() == SEARCH_START:
682
- in_search = True
683
- in_replace = False
684
- elif line.strip() == DIVIDER:
685
- in_search = False
686
- in_replace = True
687
- elif line.strip() == REPLACE_END:
688
- in_replace = False
689
- elif in_search:
690
- search_lines.append(line)
691
- elif in_replace:
692
- replace_lines.append(line)
693
-
694
- # Apply the search/replace
695
- if search_lines:
696
- search_text = '\n'.join(search_lines).strip()
697
- replace_text = '\n'.join(replace_lines).strip()
698
-
699
- if search_text in modified_content:
700
- modified_content = modified_content.replace(search_text, replace_text)
701
- else:
702
- # If exact block match fails, attempt a CSS-rule fallback using the replace_text
703
- try:
704
- import re
705
- updated_content = modified_content
706
- replaced_any_rule = False
707
- css_blocks = re.findall(r"([^{]+)\{([\s\S]*?)\}", replace_text, flags=re.MULTILINE)
708
- for selector_raw, body_raw in css_blocks:
709
- selector = selector_raw.strip()
710
- body = body_raw.strip()
711
- if not selector:
712
- continue
713
- pattern = re.compile(rf"({re.escape(selector)}\s*\{{)([\s\S]*?)(\}})")
714
- def _replace_rule(match):
715
- nonlocal replaced_any_rule
716
- replaced_any_rule = True
717
- prefix, existing_body, suffix = match.groups()
718
- first_line_indent = ""
719
- for line in existing_body.splitlines():
720
- stripped = line.lstrip(" \t")
721
- if stripped:
722
- first_line_indent = line[: len(line) - len(stripped)]
723
- break
724
- if body:
725
- new_body_lines = [first_line_indent + line if line.strip() else line for line in body.splitlines()]
726
- new_body_text = "\n" + "\n".join(new_body_lines) + "\n"
727
- else:
728
- new_body_text = existing_body
729
- return f"{prefix}{new_body_text}{suffix}"
730
- updated_content, num_subs = pattern.subn(_replace_rule, updated_content, count=1)
731
- if replaced_any_rule:
732
- modified_content = updated_content
733
- else:
734
- print(f"Warning: Search text not found in content: {search_text[:100]}...")
735
- except Exception:
736
- print(f"Warning: Search text not found in content: {search_text[:100]}...")
737
-
738
- return modified_content
739
-
740
- def apply_transformers_js_search_replace_changes(original_formatted_content: str, changes_text: str) -> str:
741
- """Apply search/replace changes to transformers.js formatted content (three files)"""
742
- if not changes_text.strip():
743
- return original_formatted_content
744
-
745
- # Parse the original formatted content to get the three files
746
- files = parse_transformers_js_output(original_formatted_content)
747
-
748
- # Split the changes text into individual search/replace blocks
749
- blocks = []
750
- current_block = ""
751
- lines = changes_text.split('\n')
752
-
753
- for line in lines:
754
- if line.strip() == SEARCH_START:
755
- if current_block.strip():
756
- blocks.append(current_block.strip())
757
- current_block = line + '\n'
758
- elif line.strip() == REPLACE_END:
759
- current_block += line + '\n'
760
- blocks.append(current_block.strip())
761
- current_block = ""
762
- else:
763
- current_block += line + '\n'
764
-
765
- if current_block.strip():
766
- blocks.append(current_block.strip())
767
-
768
- # Process each block and apply changes to the appropriate file
769
- for block in blocks:
770
- if not block.strip():
771
- continue
772
-
773
- # Parse the search/replace block
774
- lines = block.split('\n')
775
- search_lines = []
776
- replace_lines = []
777
- in_search = False
778
- in_replace = False
779
- target_file = None
780
-
781
- for line in lines:
782
- if line.strip() == SEARCH_START:
783
- in_search = True
784
- in_replace = False
785
- elif line.strip() == DIVIDER:
786
- in_search = False
787
- in_replace = True
788
- elif line.strip() == REPLACE_END:
789
- in_replace = False
790
- elif in_search:
791
- search_lines.append(line)
792
- elif in_replace:
793
- replace_lines.append(line)
794
-
795
- # Determine which file this change targets based on the search content
796
- if search_lines:
797
- search_text = '\n'.join(search_lines).strip()
798
- replace_text = '\n'.join(replace_lines).strip()
799
-
800
- # Check which file contains the search text
801
- if search_text in files['index.html']:
802
- target_file = 'index.html'
803
- elif search_text in files['index.js']:
804
- target_file = 'index.js'
805
- elif search_text in files['style.css']:
806
- target_file = 'style.css'
807
-
808
- # Apply the change to the target file
809
- if target_file and search_text in files[target_file]:
810
- files[target_file] = files[target_file].replace(search_text, replace_text)
811
- else:
812
- print(f"Warning: Search text not found in any transformers.js file: {search_text[:100]}...")
813
-
814
- # Reformat the modified files
815
- return format_transformers_js_output(files)
816
-
817
- def send_to_sandbox(code):
818
- """Render HTML in a sandboxed iframe. Assumes full HTML is provided by prompts."""
819
- html_doc = (code or "").strip()
820
- # For preview only: inline local file URLs as data URIs so the
821
- # data: iframe can load them. The original code (shown to the user) still contains file URLs.
822
- try:
823
- import re
824
- import base64 as _b64
825
- import mimetypes as _mtypes
826
- import urllib.parse as _uparse
827
- def _file_url_to_data_uri(file_url: str) -> Optional[str]:
828
- try:
829
- parsed = _uparse.urlparse(file_url)
830
- path = _uparse.unquote(parsed.path)
831
- if not path:
832
- return None
833
- with open(path, 'rb') as _f:
834
- raw = _f.read()
835
- mime = _mtypes.guess_type(path)[0] or 'application/octet-stream'
836
-
837
- b64 = _b64.b64encode(raw).decode()
838
- return f"data:{mime};base64,{b64}"
839
- except Exception as e:
840
- print(f"[Sandbox] Failed to convert file URL to data URI: {str(e)}")
841
- return None
842
- def _repl_double(m):
843
- url = m.group(1)
844
- data_uri = _file_url_to_data_uri(url)
845
- return f'src="{data_uri}"' if data_uri else m.group(0)
846
- def _repl_single(m):
847
- url = m.group(1)
848
- data_uri = _file_url_to_data_uri(url)
849
- return f"src='{data_uri}'" if data_uri else m.group(0)
850
- html_doc = re.sub(r'src="(file:[^"]+)"', _repl_double, html_doc)
851
- html_doc = re.sub(r"src='(file:[^']+)'", _repl_single, html_doc)
852
-
853
- except Exception:
854
- # Best-effort; continue without inlining
855
- pass
856
- encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
857
- data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
858
- iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
859
- return iframe
860
-
861
- def is_streamlit_code(code: str) -> bool:
862
- """Heuristic check to determine if Python code is a Streamlit app."""
863
- if not code:
864
- return False
865
- lowered = code.lower()
866
- return ("import streamlit" in lowered) or ("from streamlit" in lowered) or ("st." in code and "streamlit" in lowered)
867
-
868
- def clean_requirements_txt_content(content: str) -> str:
869
- """
870
- Clean up requirements.txt content to remove markdown formatting.
871
- This function removes code blocks, markdown lists, headers, and other formatting
872
- that might be mistakenly included by LLMs.
873
- """
874
- if not content:
875
- return content
876
-
877
- # First, remove code blocks if present
878
- if '```' in content:
879
- content = remove_code_block(content)
880
-
881
- # Process line by line to remove markdown formatting
882
- lines = content.split('\n')
883
- clean_lines = []
884
-
885
- for line in lines:
886
- stripped_line = line.strip()
887
-
888
- # Skip empty lines
889
- if not stripped_line:
890
- continue
891
-
892
- # Skip lines that are markdown formatting
893
- if (stripped_line == '```' or
894
- stripped_line.startswith('```') or
895
- # Skip markdown headers (## Header) but keep comments (# comment)
896
- (stripped_line.startswith('#') and len(stripped_line) > 1 and stripped_line[1] != ' ') or
897
- stripped_line.startswith('**') or # Skip bold text
898
- stripped_line.startswith('===') or # Skip section dividers
899
- stripped_line.startswith('---') or # Skip horizontal rules
900
- # Skip common explanatory text patterns
901
- stripped_line.lower().startswith('here') or
902
- stripped_line.lower().startswith('this') or
903
- stripped_line.lower().startswith('the ') or
904
- stripped_line.lower().startswith('based on') or
905
- stripped_line.lower().startswith('dependencies') or
906
- stripped_line.lower().startswith('requirements')):
907
- continue
908
-
909
- # Handle markdown list items (- item or * item)
910
- if (stripped_line.startswith('- ') or stripped_line.startswith('* ')):
911
- # Extract the package name after the list marker
912
- stripped_line = stripped_line[2:].strip()
913
- if not stripped_line:
914
- continue
915
-
916
- # Keep lines that look like valid package specifications
917
- # Valid lines: package names, git+https://, comments starting with "# "
918
- if (stripped_line.startswith('# ') or # Valid comments
919
- stripped_line.startswith('git+') or # Git dependencies
920
- stripped_line[0].isalnum() or # Package names start with alphanumeric
921
- '==' in stripped_line or # Version specifications
922
- '>=' in stripped_line or # Version specifications
923
- '<=' in stripped_line or # Version specifications
924
- '~=' in stripped_line): # Version specifications
925
- clean_lines.append(stripped_line)
926
-
927
- result = '\n'.join(clean_lines)
928
-
929
- # Ensure it ends with a newline
930
- if result and not result.endswith('\n'):
931
- result += '\n'
932
-
933
- return result if result else "# No additional dependencies required\n"
934
-
935
- def parse_multi_file_python_output(code: str) -> dict:
936
- """Parse multi-file Python output (Gradio/Streamlit) into separate files"""
937
- files = {}
938
- if not code:
939
- return files
940
-
941
- # Look for file separators like === filename.py ===
942
- import re
943
- file_pattern = r'=== ([^=]+) ==='
944
- parts = re.split(file_pattern, code)
945
-
946
- if len(parts) > 1:
947
- # Multi-file format detected
948
- for i in range(1, len(parts), 2):
949
- if i + 1 < len(parts):
950
- filename = parts[i].strip()
951
- content = parts[i + 1].strip()
952
-
953
- # Clean up requirements.txt to remove markdown formatting
954
- if filename == 'requirements.txt':
955
- content = clean_requirements_txt_content(content)
956
-
957
- files[filename] = content
958
- else:
959
- # Single file - check if it's a space import or regular code
960
- if "IMPORTED PROJECT FROM HUGGING FACE SPACE" in code:
961
- # This is already a multi-file import, try to parse it
962
- lines = code.split('\n')
963
- current_file = None
964
- current_content = []
965
-
966
- for line in lines:
967
- if line.startswith('=== ') and line.endswith(' ==='):
968
- # Save previous file
969
- if current_file and current_content:
970
- content = '\n'.join(current_content)
971
- # Clean up requirements.txt to remove markdown formatting
972
- if current_file == 'requirements.txt':
973
- content = clean_requirements_txt_content(content)
974
- files[current_file] = content
975
- # Start new file
976
- current_file = line[4:-4].strip()
977
- current_content = []
978
- elif current_file:
979
- current_content.append(line)
980
-
981
- # Save last file
982
- if current_file and current_content:
983
- content = '\n'.join(current_content)
984
- # Clean up requirements.txt to remove markdown formatting
985
- if current_file == 'requirements.txt':
986
- content = clean_requirements_txt_content(content)
987
- files[current_file] = content
988
- else:
989
- # Single file code - determine appropriate filename
990
- if is_streamlit_code(code):
991
- files['streamlit_app.py'] = code
992
- elif 'import gradio' in code.lower() or 'from gradio' in code.lower():
993
- files['app.py'] = code
994
- else:
995
- files['app.py'] = code
996
-
997
- return files
998
-
999
- def format_multi_file_python_output(files: dict) -> str:
1000
- """Format multiple Python files into the standard multi-file format"""
1001
- if not files:
1002
- return ""
1003
-
1004
- if len(files) == 1:
1005
- # Single file - return as is
1006
- return list(files.values())[0]
1007
-
1008
- # Multi-file format
1009
- output = []
1010
-
1011
- # Order files: main app first, then utils, models, config, requirements
1012
- file_order = ['app.py', 'streamlit_app.py', 'main.py', 'utils.py', 'models.py', 'config.py', 'requirements.txt']
1013
- ordered_files = []
1014
-
1015
- # Add files in preferred order
1016
- for preferred_file in file_order:
1017
- if preferred_file in files:
1018
- ordered_files.append(preferred_file)
1019
-
1020
- # Add remaining files
1021
- for filename in sorted(files.keys()):
1022
- if filename not in ordered_files:
1023
- ordered_files.append(filename)
1024
-
1025
- # Format output
1026
- for filename in ordered_files:
1027
- output.append(f"=== {filename} ===")
1028
-
1029
- # Clean up requirements.txt content if it's being formatted
1030
- content = files[filename]
1031
- if filename == 'requirements.txt':
1032
- content = clean_requirements_txt_content(content)
1033
-
1034
- output.append(content)
1035
- output.append("") # Empty line between files
1036
-
1037
- return '\n'.join(output)
1038
-
1039
- def send_streamlit_to_stlite(code: str) -> str:
1040
- """Render Streamlit code using stlite inside a sandboxed iframe for preview."""
1041
- # Build an HTML document that loads stlite and mounts the Streamlit app defined inline
1042
- html_doc = (
1043
- """<!doctype html>
1044
- <html>
1045
- <head>
1046
- <meta charset=\"UTF-8\" />
1047
- <meta http-equiv=\"X-UA-Compatible\" content=\"IE=edge\" />
1048
- <meta name=\"viewport\" content=\"width=device-width, initial-scale=1, shrink-to-fit=no\" />
1049
- <title>Streamlit Preview</title>
1050
- <link rel=\"stylesheet\" href=\"https://cdn.jsdelivr.net/npm/@stlite/browser@0.86.0/build/stlite.css\" />
1051
- <style>html,body{margin:0;padding:0;height:100%;} streamlit-app{display:block;height:100%;}</style>
1052
- <script type=\"module\" src=\"https://cdn.jsdelivr.net/npm/@stlite/browser@0.86.0/build/stlite.js\"></script>
1053
- </head>
1054
- <body>
1055
- <streamlit-app>
1056
- """
1057
- + (code or "")
1058
- + """
1059
- </streamlit-app>
1060
- </body>
1061
- </html>
1062
- """
1063
- )
1064
- encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
1065
- data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
1066
- iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
1067
- return iframe
1068
-
1069
- def is_gradio_code(code: str) -> bool:
1070
- """Heuristic check to determine if Python code is a Gradio app."""
1071
- if not code:
1072
- return False
1073
- lowered = code.lower()
1074
- return (
1075
- "import gradio" in lowered
1076
- or "from gradio" in lowered
1077
- or "gr.Interface(" in code
1078
- or "gr.Blocks(" in code
1079
- )
1080
-
1081
- def send_gradio_to_lite(code: str) -> str:
1082
- """Render Gradio code using gradio-lite inside a sandboxed iframe for preview."""
1083
- html_doc = (
1084
- """<!doctype html>
1085
- <html>
1086
- <head>
1087
- <meta charset=\"UTF-8\" />
1088
- <meta http-equiv=\"X-UA-Compatible\" content=\"IE=edge\" />
1089
- <meta name=\"viewport\" content=\"width=device-width, initial-scale=1, shrink-to-fit=no\" />
1090
- <title>Gradio Preview</title>
1091
- <script type=\"module\" crossorigin src=\"https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js\"></script>
1092
- <link rel=\"stylesheet\" href=\"https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css\" />
1093
- <style>html,body{margin:0;padding:0;height:100%;} gradio-lite{display:block;height:100%;}</style>
1094
- </head>
1095
- <body>
1096
- <gradio-lite>
1097
- """
1098
- + (code or "")
1099
- + """
1100
- </gradio-lite>
1101
- </body>
1102
- </html>
1103
- """
1104
- )
1105
- encoded_html = base64.b64encode(html_doc.encode('utf-8')).decode('utf-8')
1106
- data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
1107
- iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
1108
- return iframe
1109
-
1110
- stop_generation = False
1111
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/prompts.py DELETED
@@ -1,817 +0,0 @@
1
- """
2
- System prompts for different code generation modes in AnyCoder.
3
- """
4
- from .config import SEARCH_START, DIVIDER, REPLACE_END
5
-
6
- HTML_SYSTEM_PROMPT = """ONLY USE HTML, CSS AND JAVASCRIPT. If you want to use ICON make sure to import the library first. Try to create the best UI possible by using only HTML, CSS and JAVASCRIPT. MAKE IT RESPONSIVE USING MODERN CSS. Use as much as you can modern CSS for the styling, if you can't do something with modern CSS, then use custom CSS. Also, try to elaborate as much as you can, to create something unique. ALWAYS GIVE THE RESPONSE INTO A SINGLE HTML FILE
7
-
8
- **🚨 CRITICAL: DO NOT Generate README.md Files**
9
- - NEVER generate README.md files under any circumstances
10
- - A template README.md is automatically provided and will be overridden by the deployment system
11
- - Generating a README.md will break the deployment process
12
-
13
- If an image is provided, analyze it and use the visual information to better understand the user's requirements.
14
-
15
- Always respond with code that can be executed or rendered directly.
16
-
17
- Generate complete, working HTML code that can be run immediately.
18
-
19
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
20
-
21
-
22
-
23
- # Stricter prompt for GLM-4.5V to ensure a complete, runnable HTML document with no escaped characters
24
- GLM45V_HTML_SYSTEM_PROMPT = """You are an expert front-end developer.
25
-
26
- **🚨 CRITICAL: DO NOT Generate README.md Files**
27
- - NEVER generate README.md files under any circumstances
28
- - A template README.md is automatically provided and will be overridden by the deployment system
29
- - Generating a README.md will break the deployment process
30
-
31
- Output a COMPLETE, STANDALONE HTML document that renders directly in a browser.
32
-
33
- Hard constraints:
34
- - DO NOT use React, ReactDOM, JSX, Babel, Vue, Angular, or any SPA framework.
35
- - Use ONLY plain HTML, CSS, and vanilla JavaScript.
36
- - Allowed external resources: Tailwind CSS CDN, Font Awesome CDN, Google Fonts.
37
- - Do NOT escape characters (no \\n, \\t, or escaped quotes). Output raw HTML/JS/CSS.
38
- Structural requirements:
39
- - Include <!DOCTYPE html>, <html>, <head>, and <body> with proper nesting
40
- - Include required <link> tags for any CSS you reference (e.g., Tailwind, Font Awesome, Google Fonts)
41
- - Keep everything in ONE file; inline CSS/JS as needed
42
-
43
- Generate complete, working HTML code that can be run immediately.
44
-
45
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder
46
- """
47
-
48
- TRANSFORMERS_JS_SYSTEM_PROMPT = """You are an expert web developer creating a transformers.js application. You will generate THREE separate files: index.html, index.js, and style.css.
49
-
50
- **🚨 CRITICAL: DO NOT Generate README.md Files**
51
- - NEVER generate README.md files under any circumstances
52
- - A template README.md is automatically provided and will be overridden by the deployment system
53
- - Generating a README.md will break the deployment process
54
-
55
- IMPORTANT: You MUST output ALL THREE files in the following format:
56
-
57
- ```html
58
- <!-- index.html content here -->
59
- ```
60
-
61
- ```javascript
62
- // index.js content here
63
- ```
64
-
65
- ```css
66
- /* style.css content here */
67
- ```
68
-
69
- Requirements:
70
- 1. Create a modern, responsive web application using transformers.js
71
- 2. Use the transformers.js library for AI/ML functionality
72
- 3. Create a clean, professional UI with good user experience
73
- 4. Make the application fully responsive for mobile devices
74
- 5. Use modern CSS practices and JavaScript ES6+ features
75
- 6. Include proper error handling and loading states
76
- 7. Follow accessibility best practices
77
-
78
- Library import (required): Add the following snippet to index.html to import transformers.js:
79
- <script type="module">
80
- import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.7.3';
81
- </script>
82
-
83
- Device Options: By default, transformers.js runs on CPU (via WASM). For better performance, you can run models on GPU using WebGPU:
84
- - CPU (default): const pipe = await pipeline('task', 'model-name');
85
- - GPU (WebGPU): const pipe = await pipeline('task', 'model-name', { device: 'webgpu' });
86
-
87
- Consider providing users with a toggle option to choose between CPU and GPU execution based on their browser's WebGPU support.
88
-
89
- The index.html should contain the basic HTML structure and link to the CSS and JS files.
90
- The index.js should contain all the JavaScript logic including transformers.js integration.
91
- The style.css should contain all the styling for the application.
92
-
93
- Generate complete, working code files as shown above.
94
-
95
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
96
-
97
- STREAMLIT_SYSTEM_PROMPT = """You are an expert Streamlit developer. Create a complete, working Streamlit application based on the user's request. Generate all necessary code to make the application functional and runnable.
98
-
99
- ## Multi-File Application Structure
100
-
101
- When creating Streamlit applications, you MUST organize your code into multiple files for proper deployment:
102
-
103
- **File Organization (CRITICAL - Always Include These):**
104
- - `Dockerfile` - Docker configuration for deployment (REQUIRED)
105
- - `streamlit_app.py` - Main application entry point (REQUIRED)
106
- - `requirements.txt` - Python dependencies (REQUIRED)
107
- - `utils.py` - Utility functions and helpers (optional)
108
- - `models.py` - Model loading and inference functions (optional)
109
- - `config.py` - Configuration and constants (optional)
110
- - `pages/` - Additional pages for multi-page apps (optional)
111
- - Additional modules as needed (e.g., `data_processing.py`, `components.py`)
112
-
113
- **🚨 CRITICAL: DO NOT Generate README.md Files**
114
- - NEVER generate README.md files under any circumstances
115
- - A template README.md is automatically provided and will be overridden by the deployment system
116
- - Generating a README.md will break the deployment process
117
- - Only generate the code files listed above
118
-
119
- **Output Format for Streamlit Apps:**
120
- You MUST use this exact format and ALWAYS include Dockerfile, streamlit_app.py, and requirements.txt:
121
-
122
- ```
123
- === Dockerfile ===
124
- [Dockerfile content]
125
-
126
- === streamlit_app.py ===
127
- [main application code]
128
-
129
- === requirements.txt ===
130
- [dependencies]
131
-
132
- === utils.py ===
133
- [utility functions - optional]
134
- ```
135
-
136
- **🚨 CRITICAL: Dockerfile Requirements (MANDATORY for HuggingFace Spaces)**
137
- Your Dockerfile MUST follow these exact specifications:
138
- - Use Python 3.11+ base image (e.g., FROM python:3.11-slim)
139
- - Set up a user with ID 1000 for proper permissions:
140
- ```
141
- RUN useradd -m -u 1000 user
142
- USER user
143
- ENV HOME=/home/user \\
144
- PATH=/home/user/.local/bin:$PATH
145
- WORKDIR $HOME/app
146
- ```
147
- - ALWAYS use --chown=user with COPY and ADD commands:
148
- ```
149
- COPY --chown=user requirements.txt .
150
- COPY --chown=user . .
151
- ```
152
- - Install dependencies: RUN pip install --no-cache-dir -r requirements.txt
153
- - Expose port 7860 (HuggingFace Spaces default): EXPOSE 7860
154
- - Start with: CMD ["streamlit", "run", "streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"]
155
-
156
- **Example Dockerfile structure (USE THIS AS TEMPLATE):**
157
- ```dockerfile
158
- FROM python:3.11-slim
159
-
160
- # Set up user with ID 1000
161
- RUN useradd -m -u 1000 user
162
- USER user
163
- ENV HOME=/home/user \\
164
- PATH=/home/user/.local/bin:$PATH
165
-
166
- # Set working directory
167
- WORKDIR $HOME/app
168
-
169
- # Copy requirements file with proper ownership
170
- COPY --chown=user requirements.txt .
171
-
172
- # Install dependencies
173
- RUN pip install --no-cache-dir -r requirements.txt
174
-
175
- # Copy application files with proper ownership
176
- COPY --chown=user . .
177
-
178
- # Expose port 7860
179
- EXPOSE 7860
180
-
181
- # Start Streamlit app
182
- CMD ["streamlit", "run", "streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"]
183
- ```
184
-
185
- **🚨 CRITICAL: requirements.txt Formatting Rules**
186
- - Output ONLY plain text package names, one per line
187
- - Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
188
- - Do NOT add explanatory text or descriptions
189
- - Do NOT wrap in code blocks
190
- - Just raw package names as they would appear in a real requirements.txt file
191
- - Example of CORRECT format:
192
- streamlit
193
- pandas
194
- numpy
195
- - Example of INCORRECT format (DO NOT DO THIS):
196
- ```
197
- streamlit # For web interface
198
- **Core dependencies:**
199
- - pandas
200
- ```
201
-
202
- **Multi-Page Apps:**
203
- For multi-page Streamlit apps, use the pages/ directory structure:
204
- ```
205
- === Dockerfile ===
206
- [Dockerfile content]
207
-
208
- === streamlit_app.py ===
209
- [main page]
210
-
211
- === requirements.txt ===
212
- [dependencies]
213
-
214
- === pages/1_📊_Analytics.py ===
215
- [analytics page]
216
-
217
- === pages/2_⚙️_Settings.py ===
218
- [settings page]
219
- ```
220
-
221
- Requirements:
222
- 1. ALWAYS include Dockerfile, streamlit_app.py, and requirements.txt in your output
223
- 2. Create a modern, responsive Streamlit application
224
- 3. Use appropriate Streamlit components and layouts
225
- 4. Include proper error handling and loading states
226
- 5. Follow Streamlit best practices for performance
227
- 6. Use caching (@st.cache_data, @st.cache_resource) appropriately
228
- 7. Include proper session state management when needed
229
- 8. Make the UI intuitive and user-friendly
230
- 9. Add helpful tooltips and documentation
231
-
232
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder
233
- """
234
-
235
- REACT_SYSTEM_PROMPT = """You are an expert React and Next.js developer creating a modern Next.js application.
236
-
237
- **🚨 CRITICAL: DO NOT Generate README.md Files**
238
- |- NEVER generate README.md files under any circumstances
239
- |- A template README.md is automatically provided and will be overridden by the deployment system
240
- |- Generating a README.md will break the deployment process
241
-
242
- You will generate a Next.js project with TypeScript/JSX components. Follow this exact structure:
243
-
244
- Project Structure:
245
- - Dockerfile (Docker configuration for deployment)
246
- - package.json (dependencies and scripts)
247
- - next.config.js (Next.js configuration)
248
- - postcss.config.js (PostCSS configuration)
249
- - tailwind.config.js (Tailwind CSS configuration)
250
- - components/[Component files as needed]
251
- - pages/_app.js (Next.js app wrapper)
252
- - pages/index.js (home page)
253
- - pages/api/[API routes as needed]
254
- - styles/globals.css (global styles)
255
-
256
- Output format (CRITICAL):
257
- - Return ONLY a series of file sections, each starting with a filename line:
258
- === Dockerfile ===
259
- ...file content...
260
-
261
- === package.json ===
262
- ...file content...
263
-
264
- (repeat for all files)
265
- - Do NOT wrap files in Markdown code fences or use === markers inside file content
266
-
267
- CRITICAL Requirements:
268
- 1. Always include a Dockerfile configured for Node.js deployment (see Dockerfile Requirements below)
269
- 2. Use Next.js with TypeScript/JSX (.jsx files for components)
270
- 3. **USE TAILWIND CSS FOR ALL STYLING** - Avoid inline styles completely (in postcss.config.js and tailwind.config.js)
271
- 4. Create necessary components in the components/ directory
272
- 5. Create API routes in pages/api/ directory for backend logic
273
- 6. pages/_app.js should import and use globals.css
274
- 7. pages/index.js should be the main entry point
275
- 8. Keep package.json with essential dependencies
276
- 9. Use modern React patterns and best practices
277
- 10. Make the application fully responsive using Tailwind classes
278
- 11. Include proper error handling and loading states
279
- 12. Follow accessibility best practices
280
- 13. Configure next.config.js properly for HuggingFace Spaces deployment
281
- 14. **NEVER use inline style={{}} objects - always use Tailwind className instead**
282
-
283
- 🚨 CRITICAL JSX SYNTAX RULES - FOLLOW EXACTLY:
284
-
285
- **RULE 1: Style objects MUST have proper closing braces }}**
286
- Every style={{ must have a matching }} before any other props or />
287
-
288
- **RULE 2: ALWAYS use Tailwind CSS classes instead of inline styles**
289
- - Use className="..." for styling
290
- - Only use inline styles if absolutely necessary
291
- - Inline styles are error-prone and should be avoided
292
-
293
- **CORRECT Examples:**
294
- ```jsx
295
- // ✅ Using Tailwind (PREFERRED)
296
- <textarea
297
- className="w-full p-3 min-h-[48px] max-h-[120px] rounded-lg border"
298
- value={message}
299
- onChange={(e) => setMessage(e.target.value)}
300
- placeholder="Type here"
301
- />
302
-
303
- // ✅ Inline style (if needed) - note the }} before other props
304
- <textarea
305
- style={{
306
- width: '100%',
307
- padding: '12px',
308
- minHeight: '48px'
309
- }}
310
- value={message}
311
- onChange={(e) => setMessage(e.target.value)}
312
- />
313
- ```
314
-
315
- **WRONG Examples:**
316
- ```jsx
317
- // ❌ WRONG - Missing closing braces }}
318
- <textarea
319
- style={{
320
- minHeight: '48px',
321
- maxHeight: '120px'
322
-
323
- />
324
-
325
- // ❌ WRONG - Event handler inside style object
326
- <textarea
327
- style={{
328
- width: '100%'
329
- onChange={(e) => {}} // Missing }}
330
- />
331
- ```
332
-
333
- **RULE 3: Validation Checklist**
334
- Before outputting JSX code, verify:
335
- - [ ] All style={{ have matching }}
336
- - [ ] No event handlers inside style objects
337
- - [ ] Prefer Tailwind classes over inline styles
338
- - [ ] All JSX elements are properly closed
339
-
340
- next.config.js Requirements:
341
- - Must be configured to work on any host (0.0.0.0)
342
- - Should not have hardcoded localhost references
343
- - Example minimal configuration:
344
- ```javascript
345
- /** @type {import('next').NextConfig} */
346
- const nextConfig = {
347
- reactStrictMode: true,
348
- // Allow the app to work on HuggingFace Spaces
349
- output: 'standalone',
350
- }
351
-
352
- module.exports = nextConfig
353
- ```
354
-
355
- Dockerfile Requirements (CRITICAL for HuggingFace Spaces):
356
- - Use Node.js 18+ base image (e.g., FROM node:18-slim)
357
- - Use the existing 'node' user (UID 1000 already exists in node base images):
358
- ```
359
- USER node
360
- ENV HOME=/home/node \\
361
- PATH=/home/node/.local/bin:$PATH
362
- WORKDIR /home/node/app
363
- ```
364
- - ALWAYS use --chown=node:node with COPY and ADD commands:
365
- ```
366
- COPY --chown=node:node package*.json ./
367
- COPY --chown=node:node . .
368
- ```
369
- - Install dependencies: RUN npm install
370
- - Build the app: RUN npm run build
371
- - Expose port 7860 (HuggingFace Spaces default): EXPOSE 7860
372
- - Start with: CMD ["npm", "start", "--", "-p", "7860"]
373
-
374
- Example Dockerfile structure:
375
- ```dockerfile
376
- FROM node:18-slim
377
-
378
- # Use the existing node user (UID 1000)
379
- USER node
380
-
381
- # Set environment variables
382
- ENV HOME=/home/node \\
383
- PATH=/home/node/.local/bin:$PATH
384
-
385
- # Set working directory
386
- WORKDIR /home/node/app
387
-
388
- # Copy package files with proper ownership
389
- COPY --chown=node:node package*.json ./
390
-
391
- # Install dependencies
392
- RUN npm install
393
-
394
- # Copy rest of the application with proper ownership
395
- COPY --chown=node:node . .
396
-
397
- # Build the Next.js app
398
- RUN npm run build
399
-
400
- # Expose port 7860
401
- EXPOSE 7860
402
-
403
- # Start the application on port 7860
404
- CMD ["npm", "start", "--", "-p", "7860"]
405
- ```
406
-
407
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder
408
- """
409
-
410
- REACT_FOLLOW_UP_SYSTEM_PROMPT = """You are an expert React and Next.js developer modifying an existing Next.js application.
411
- The user wants to apply changes based on their request.
412
- You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file.
413
- Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks.
414
-
415
- 🚨 CRITICAL JSX SYNTAX RULES - FOLLOW EXACTLY:
416
-
417
- **RULE 1: Style objects MUST have proper closing braces }}**
418
- Every style={{ must have a matching }} before any other props or />
419
-
420
- **RULE 2: ALWAYS use Tailwind CSS classes instead of inline styles**
421
- - Use className="..." for styling
422
- - Only use inline styles if absolutely necessary
423
- - When replacing inline styles, use Tailwind classes
424
-
425
- **RULE 3: Before outputting, verify:**
426
- - [ ] All style={{ have matching }}
427
- - [ ] No event handlers inside style objects
428
- - [ ] Prefer Tailwind classes over inline styles
429
- - [ ] All JSX elements are properly closed
430
-
431
- Format Rules:
432
- 1. Start with <<<<<<< SEARCH
433
- 2. Include the exact lines that need to be changed (with full context, at least 3 lines before and after)
434
- 3. Follow with =======
435
- 4. Include the replacement lines
436
- 5. End with >>>>>>> REPLACE
437
- 6. Generate multiple blocks if multiple sections need changes
438
-
439
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
440
-
441
-
442
-
443
- # Gradio system prompts will be dynamically populated by update_gradio_system_prompts()
444
- GRADIO_SYSTEM_PROMPT = ""
445
- GRADIO_SYSTEM_PROMPT_WITH_SEARCH = ""
446
-
447
- # GRADIO_SYSTEM_PROMPT_WITH_SEARCH will be dynamically populated by update_gradio_system_prompts()
448
-
449
- # All Gradio API documentation is now dynamically loaded from https://www.gradio.app/llms.txt
450
-
451
- # JSON system prompts will be dynamically populated by update_json_system_prompts()
452
- JSON_SYSTEM_PROMPT = ""
453
- JSON_SYSTEM_PROMPT_WITH_SEARCH = ""
454
-
455
- # All ComfyUI API documentation is now dynamically loaded from https://docs.comfy.org/llms.txt
456
-
457
- GENERIC_SYSTEM_PROMPT = """You are an expert {language} developer. Write clean, idiomatic, and runnable {language} code for the user's request. If possible, include comments and best practices. Generate complete, working code that can be run immediately. If the user provides a file or other context, use it as a reference. If the code is for a script or app, make it as self-contained as possible.
458
-
459
- **🚨 CRITICAL: DO NOT Generate README.md Files**
460
- - NEVER generate README.md files under any circumstances
461
- - A template README.md is automatically provided and will be overridden by the deployment system
462
- - Generating a README.md will break the deployment process
463
-
464
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
465
-
466
-
467
- # Multi-page static HTML project prompt (generic, production-style structure)
468
- MULTIPAGE_HTML_SYSTEM_PROMPT = """You are an expert front-end developer.
469
-
470
- **🚨 CRITICAL: DO NOT Generate README.md Files**
471
- - NEVER generate README.md files under any circumstances
472
- - A template README.md is automatically provided and will be overridden by the deployment system
473
- - Generating a README.md will break the deployment process
474
-
475
- Create a production-ready MULTI-PAGE website using ONLY HTML, CSS, and vanilla JavaScript. Do NOT use SPA frameworks.
476
-
477
- Output MUST be a multi-file project with at least:
478
- - index.html (home)
479
- - about.html (secondary page)
480
- - contact.html (secondary page)
481
- - assets/css/styles.css (global styles)
482
- - assets/js/main.js (site-wide JS)
483
-
484
- Navigation requirements:
485
- - A consistent header with a nav bar on every page
486
- - Highlight current nav item
487
- - Responsive layout and accessibility best practices
488
-
489
- Output format requirements (CRITICAL):
490
- - Return ONLY a series of file sections, each starting with a filename line:
491
- === index.html ===
492
- ...file content...
493
-
494
- === about.html ===
495
- ...file content...
496
-
497
- (repeat for all files)
498
- - Do NOT wrap files in Markdown code fences
499
- - Use relative paths between files (e.g., assets/css/styles.css)
500
-
501
- General requirements:
502
- - Use modern, semantic HTML
503
- - Mobile-first responsive design
504
- - Include basic SEO meta tags in <head>
505
- - Include a footer on all pages
506
- - Avoid external CSS/JS frameworks (optional: CDN fonts/icons allowed)
507
-
508
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder
509
- """
510
-
511
-
512
- # Dynamic multi-page (model decides files) prompts
513
- DYNAMIC_MULTIPAGE_HTML_SYSTEM_PROMPT = """You are an expert front-end developer.
514
-
515
- **🚨 CRITICAL: DO NOT Generate README.md Files**
516
- - NEVER generate README.md files under any circumstances
517
- - A template README.md is automatically provided and will be overridden by the deployment system
518
- - Generating a README.md will break the deployment process
519
-
520
- Create a production-ready website using ONLY HTML, CSS, and vanilla JavaScript. Do NOT use SPA frameworks.
521
-
522
- File selection policy:
523
- - Generate ONLY the files actually needed for the user's request.
524
- - Include at least one HTML entrypoint (default: index.html) unless the user explicitly requests a non-HTML asset only.
525
- - If any local asset (CSS/JS/image) is referenced, include that file in the output.
526
- - Use relative paths between files (e.g., assets/css/styles.css).
527
-
528
- Output format (CRITICAL):
529
- - Return ONLY a series of file sections, each starting with a filename line:
530
- === index.html ===
531
- ...file content...
532
-
533
- === assets/css/styles.css ===
534
- ...file content...
535
-
536
- (repeat for all files)
537
- - Do NOT wrap files in Markdown code fences
538
-
539
- General requirements:
540
- - Use modern, semantic HTML
541
- - Mobile-first responsive design
542
- - Include basic SEO meta tags in <head> for the entrypoint
543
- - Include a footer on all major pages when multiple pages are present
544
- - Avoid external CSS/JS frameworks (optional: CDN fonts/icons allowed)
545
-
546
- IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder
547
- """
548
-
549
-
550
-
551
- # Follow-up system prompt for modifying existing HTML files
552
- FollowUpSystemPrompt = f"""You are an expert web developer modifying an existing project.
553
- The user wants to apply changes based on their request.
554
- You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file.
555
- Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks.
556
-
557
- IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing:
558
- - ImportError/ModuleNotFoundError → Fix requirements.txt by adding missing packages
559
- - Syntax errors in Python code → Fix app.py or the main Python file
560
- - HTML/CSS/JavaScript errors → Fix the respective HTML/CSS/JS files
561
- - Configuration errors → Fix config files, Docker files, etc.
562
-
563
- For Python applications (Gradio/Streamlit), the project structure typically includes:
564
- - app.py or streamlit_app.py (main application file)
565
- - requirements.txt (dependencies)
566
- - utils.py (utility functions)
567
- - models.py (model loading and inference)
568
- - config.py (configuration)
569
- - pages/ (for multi-page Streamlit apps)
570
- - Other supporting files as needed
571
-
572
- **🚨 CRITICAL: DO NOT Generate README.md Files**
573
- - NEVER generate README.md files under any circumstances
574
- - A template README.md is automatically provided and will be overridden by the deployment system
575
- - Generating a README.md will break the deployment process
576
-
577
- For multi-file projects, identify which specific file needs modification based on the user's request:
578
- - Main application logic → app.py or streamlit_app.py
579
- - Helper functions → utils.py
580
- - Model-related code → models.py
581
- - Configuration changes → config.py
582
- - Dependencies → requirements.txt
583
- - New pages → pages/filename.py
584
-
585
- Format Rules:
586
- 1. Start with {SEARCH_START}
587
- 2. Provide the exact lines from the current code that need to be replaced.
588
- 3. Use {DIVIDER} to separate the search block from the replacement.
589
- 4. Provide the new lines that should replace the original lines.
590
- 5. End with {REPLACE_END}
591
- 6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file.
592
- 7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block.
593
- 8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines).
594
- 9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace.
595
- 10. For multi-file projects, specify which file you're modifying by starting with the filename before the search/replace block.
596
-
597
- CSS Changes Guidance:
598
- - When changing a CSS property that conflicts with other properties (e.g., replacing a gradient text with a solid color), replace the entire CSS rule for that selector instead of only adding the new property. For example, replace the full `.hero h1 { ... }` block, removing `background-clip` and `color: transparent` when setting `color: #fff`.
599
- - Ensure search blocks match the current code exactly (spaces, indentation, and line breaks) so replacements apply correctly.
600
-
601
- Example Modifying Code:
602
- ```
603
- Some explanation...
604
- {SEARCH_START}
605
- <h1>Old Title</h1>
606
- {DIVIDER}
607
- <h1>New Title</h1>
608
- {REPLACE_END}
609
- {SEARCH_START}
610
- </body>
611
- {DIVIDER}
612
- <script>console.log("Added script");</script>
613
- </body>
614
- {REPLACE_END}
615
- ```
616
-
617
- Example Fixing Dependencies (requirements.txt):
618
- ```
619
- Adding missing dependency to fix ImportError...
620
- === requirements.txt ===
621
- {SEARCH_START}
622
- gradio
623
- streamlit
624
- {DIVIDER}
625
- gradio
626
- streamlit
627
- mistral-common
628
- {REPLACE_END}
629
- ```
630
-
631
- Example Deleting Code:
632
- ```
633
- Removing the paragraph...
634
- {SEARCH_START}
635
- <p>This paragraph will be deleted.</p>
636
- {DIVIDER}
637
- {REPLACE_END}
638
- ```
639
-
640
- IMPORTANT: Always ensure "Built with anycoder" appears as clickable text in the header/top section linking to https://huggingface.co/spaces/akhaliq/anycoder - if it's missing from the existing code, add it; if it exists, preserve it.
641
-
642
- CRITICAL: For imported spaces that lack anycoder attribution, you MUST add it as part of your modifications. Add it to the header/navigation area as clickable text linking to https://huggingface.co/spaces/akhaliq/anycoder"""
643
-
644
- # Follow-up system prompt for modifying existing Gradio applications
645
- GradioFollowUpSystemPrompt = """You are an expert Gradio developer modifying an existing Gradio application.
646
- The user wants to apply changes based on their request.
647
-
648
- 🚨 CRITICAL OUTPUT RULES:
649
- - DO NOT use <think> tags or thinking blocks in your output
650
- - DO NOT use [TOOL_CALL] or any tool call markers
651
- - Generate ONLY the requested code files
652
- - No explanatory text outside the code blocks
653
-
654
- 🚨 CRITICAL INSTRUCTION: You MUST maintain the original multi-file structure when making modifications.
655
- ❌ Do NOT use SEARCH/REPLACE blocks.
656
- ❌ Do NOT output everything in one combined block.
657
- ✅ Instead, output the complete modified files using the EXACT same multi-file format as the original generation.
658
-
659
- **MANDATORY Output Format for Modified Gradio Apps:**
660
- You MUST use this exact format with file separators. DO NOT deviate from this format:
661
-
662
- === app.py ===
663
- [complete modified app.py content]
664
-
665
- **CRITICAL FORMATTING RULES:**
666
- - ALWAYS start each file with exactly "=== filename ===" (three equals signs before and after)
667
- - NEVER combine files into one block
668
- - NEVER use SEARCH/REPLACE blocks like <<<<<<< SEARCH
669
- - ALWAYS include app.py if it needs changes
670
- - Only include other files (utils.py, models.py, etc.) if they exist and need changes
671
- - Each file section must be complete and standalone
672
- - The format MUST match the original multi-file structure exactly
673
-
674
- **🚨 CRITICAL: DO NOT GENERATE requirements.txt or README.md**
675
- - requirements.txt is automatically generated from your app.py imports
676
- - README.md is automatically provided by the template
677
- - Do NOT include requirements.txt or README.md in your output unless the user specifically asks to modify them
678
- - The system will automatically extract imports from app.py and generate requirements.txt
679
- - Generating a README.md will break the deployment process
680
- - This prevents unnecessary changes to dependencies and documentation
681
-
682
- **IF User Specifically Asks to Modify requirements.txt:**
683
- - Output ONLY plain text package names, one per line
684
- - Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
685
- - Do NOT add explanatory text or descriptions
686
- - Do NOT wrap in code blocks
687
- - Just raw package names as they would appear in a real requirements.txt file
688
- - Example of CORRECT format:
689
- gradio
690
- torch
691
- transformers
692
- - Example of INCORRECT format (DO NOT DO THIS):
693
- ```
694
- gradio # For web interface
695
- **Core dependencies:**
696
- - torch
697
- ```
698
-
699
- **File Modification Guidelines:**
700
- - Only output files that actually need changes
701
- - If a file doesn't need modification, don't include it in the output
702
- - Maintain the exact same file structure as the original
703
- - Preserve all existing functionality unless specifically asked to change it
704
- - Keep all imports, dependencies, and configurations intact unless modification is requested
705
-
706
- **Common Modification Scenarios:**
707
- - Adding new features → Modify app.py and possibly utils.py
708
- - Fixing bugs → Modify the relevant file (usually app.py)
709
- - Adding dependencies → Modify requirements.txt
710
- - UI improvements → Modify app.py
711
- - Performance optimizations → Modify app.py and/or utils.py
712
-
713
- **ZeroGPU and Performance:**
714
- - Maintain all existing @spaces.GPU decorators
715
- - Keep AoT compilation if present
716
- - Preserve all performance optimizations
717
- - Add ZeroGPU decorators for new GPU-dependent functions
718
-
719
- **MCP Server Support:**
720
- - If the user requests MCP functionality or tool calling capabilities:
721
- 1. Add `mcp_server=True` to the `.launch()` method if not present
722
- 2. Ensure `gradio[mcp]` is in requirements.txt (not just `gradio`)
723
- 3. Add detailed docstrings with Args sections to all functions
724
- 4. Add type hints to all function parameters
725
- - Preserve existing MCP configurations if already present
726
- - When adding new tools, follow MCP docstring format with Args and Returns sections
727
-
728
- IMPORTANT: Always ensure "Built with anycoder" appears as clickable text in the header/top section linking to https://huggingface.co/spaces/akhaliq/anycoder - if it's missing from the existing code, add it; if it exists, preserve it.
729
-
730
- CRITICAL: For imported spaces that lack anycoder attribution, you MUST add it as part of your modifications. Add it to the header/navigation area as clickable text linking to https://huggingface.co/spaces/akhaliq/anycoder"""
731
-
732
- # Follow-up system prompt for modifying existing transformers.js applications
733
- TransformersJSFollowUpSystemPrompt = f"""You are an expert web developer modifying an existing transformers.js application.
734
- The user wants to apply changes based on their request.
735
- You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file.
736
- Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks.
737
-
738
- IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing:
739
- - JavaScript errors/module loading issues → Fix index.js
740
- - HTML rendering/DOM issues → Fix index.html
741
- - Styling/visual issues → Fix style.css
742
- - CDN/library loading errors → Fix script tags in index.html
743
-
744
- The transformers.js application consists of three files: index.html, index.js, and style.css.
745
- When making changes, specify which file you're modifying by starting your search/replace blocks with the file name.
746
-
747
- **🚨 CRITICAL: DO NOT Generate README.md Files**
748
- - NEVER generate README.md files under any circumstances
749
- - A template README.md is automatically provided and will be overridden by the deployment system
750
- - Generating a README.md will break the deployment process
751
-
752
- Format Rules:
753
- 1. Start with {SEARCH_START}
754
- 2. Provide the exact lines from the current code that need to be replaced.
755
- 3. Use {DIVIDER} to separate the search block from the replacement.
756
- 4. Provide the new lines that should replace the original lines.
757
- 5. End with {REPLACE_END}
758
- 6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file.
759
- 7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block.
760
- 8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines).
761
- 9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace.
762
-
763
- Example Modifying HTML:
764
- ```
765
- Changing the title in index.html...
766
- === index.html ===
767
- {SEARCH_START}
768
- <title>Old Title</title>
769
- {DIVIDER}
770
- <title>New Title</title>
771
- {REPLACE_END}
772
- ```
773
-
774
- Example Modifying JavaScript:
775
- ```
776
- Adding a new function to index.js...
777
- === index.js ===
778
- {SEARCH_START}
779
- // Existing code
780
- {DIVIDER}
781
- // Existing code
782
-
783
- function newFunction() {{
784
- console.log("New function added");
785
- }}
786
- {REPLACE_END}
787
- ```
788
-
789
- Example Modifying CSS:
790
- ```
791
- Changing background color in style.css...
792
- === style.css ===
793
- {SEARCH_START}
794
- body {{
795
- background-color: white;
796
- }}
797
- {DIVIDER}
798
- body {{
799
- background-color: #f0f0f0;
800
- }}
801
- {REPLACE_END}
802
- ```
803
- Example Fixing Library Loading Error:
804
- ```
805
- Fixing transformers.js CDN loading error...
806
- === index.html ===
807
- {SEARCH_START}
808
- <script type="module" src="https://cdn.jsdelivr.net/npm/@xenova/transformers@2.6.0"></script>
809
- {DIVIDER}
810
- <script type="module" src="https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2"></script>
811
- {REPLACE_END}
812
- ```
813
-
814
- IMPORTANT: Always ensure "Built with anycoder" appears as clickable text in the header/top section linking to https://huggingface.co/spaces/akhaliq/anycoder - if it's missing from the existing code, add it; if it exists, preserve it.
815
-
816
- CRITICAL: For imported spaces that lack anycoder attribution, you MUST add it as part of your modifications. Add it to the header/navigation area as clickable text linking to https://huggingface.co/spaces/akhaliq/anycoder"""
817
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/themes.py DELETED
@@ -1,257 +0,0 @@
1
- """
2
- Gradio theme configurations for AnyCoder.
3
- Provides multiple theme options with different visual styles.
4
- """
5
- import os
6
- import gradio as gr
7
-
8
- def get_saved_theme():
9
- """Get the saved theme preference from file"""
10
- try:
11
- if os.path.exists('.theme_preference'):
12
- with open('.theme_preference', 'r') as f:
13
- return f.read().strip()
14
- except:
15
- pass
16
- return "Developer"
17
- def save_theme_preference(theme_name):
18
- """Save theme preference to file"""
19
- try:
20
- with open('.theme_preference', 'w') as f:
21
- f.write(theme_name)
22
- except:
23
- pass
24
-
25
- THEME_CONFIGS = {
26
- "Default": {
27
- "theme": gr.themes.Default(),
28
- "description": "Gradio's standard theme with clean orange accents"
29
- },
30
- "Base": {
31
- "theme": gr.themes.Base(
32
- primary_hue="blue",
33
- secondary_hue="slate",
34
- neutral_hue="slate",
35
- text_size="sm",
36
- spacing_size="sm",
37
- radius_size="md"
38
- ),
39
- "description": "Minimal foundation theme with blue accents"
40
- },
41
- "Soft": {
42
- "theme": gr.themes.Soft(
43
- primary_hue="emerald",
44
- secondary_hue="emerald",
45
- neutral_hue="slate",
46
- text_size="sm",
47
- spacing_size="md",
48
- radius_size="lg"
49
- ),
50
- "description": "Gentle rounded theme with soft emerald colors"
51
- },
52
- "Monochrome": {
53
- "theme": gr.themes.Monochrome(
54
- primary_hue="slate",
55
- secondary_hue="slate",
56
- neutral_hue="slate",
57
- text_size="sm",
58
- spacing_size="sm",
59
- radius_size="sm"
60
- ),
61
- "description": "Elegant black and white design"
62
- },
63
- "Glass": {
64
- "theme": gr.themes.Glass(
65
- primary_hue="blue",
66
- secondary_hue="blue",
67
- neutral_hue="slate",
68
- text_size="sm",
69
- spacing_size="md",
70
- radius_size="lg"
71
- ),
72
- "description": "Modern glassmorphism with blur effects"
73
- },
74
- "Dark Ocean": {
75
- "theme": gr.themes.Base(
76
- primary_hue="blue",
77
- secondary_hue="slate",
78
- neutral_hue="slate",
79
- text_size="sm",
80
- spacing_size="sm",
81
- radius_size="md"
82
- ).set(
83
- body_background_fill="#0f172a",
84
- body_background_fill_dark="#0f172a",
85
- background_fill_primary="#3b82f6",
86
- background_fill_secondary="#1e293b",
87
- border_color_primary="#334155",
88
- block_background_fill="#1e293b",
89
- block_border_color="#334155",
90
- body_text_color="#f1f5f9",
91
- body_text_color_dark="#f1f5f9",
92
- block_label_text_color="#f1f5f9",
93
- block_label_text_color_dark="#f1f5f9",
94
- block_title_text_color="#f1f5f9",
95
- block_title_text_color_dark="#f1f5f9",
96
- input_background_fill="#0f172a",
97
- input_background_fill_dark="#0f172a",
98
- input_border_color="#334155",
99
- input_border_color_dark="#334155",
100
- button_primary_background_fill="#3b82f6",
101
- button_primary_border_color="#3b82f6",
102
- button_secondary_background_fill="#334155",
103
- button_secondary_border_color="#475569"
104
- ),
105
- "description": "Deep blue dark theme perfect for coding"
106
- },
107
- "Cyberpunk": {
108
- "theme": gr.themes.Base(
109
- primary_hue="fuchsia",
110
- secondary_hue="cyan",
111
- neutral_hue="slate",
112
- text_size="sm",
113
- spacing_size="sm",
114
- radius_size="none",
115
- font="Orbitron"
116
- ).set(
117
- body_background_fill="#0a0a0f",
118
- body_background_fill_dark="#0a0a0f",
119
- background_fill_primary="#ff10f0",
120
- background_fill_secondary="#1a1a2e",
121
- border_color_primary="#00f5ff",
122
- block_background_fill="#1a1a2e",
123
- block_border_color="#00f5ff",
124
- body_text_color="#00f5ff",
125
- body_text_color_dark="#00f5ff",
126
- block_label_text_color="#ff10f0",
127
- block_label_text_color_dark="#ff10f0",
128
- block_title_text_color="#ff10f0",
129
- block_title_text_color_dark="#ff10f0",
130
- input_background_fill="#0a0a0f",
131
- input_background_fill_dark="#0a0a0f",
132
- input_border_color="#00f5ff",
133
- input_border_color_dark="#00f5ff",
134
- button_primary_background_fill="#ff10f0",
135
- button_primary_border_color="#ff10f0",
136
- button_secondary_background_fill="#1a1a2e",
137
- button_secondary_border_color="#00f5ff"
138
- ),
139
- "description": "Futuristic neon cyber aesthetics"
140
- },
141
- "Forest": {
142
- "theme": gr.themes.Soft(
143
- primary_hue="emerald",
144
- secondary_hue="green",
145
- neutral_hue="emerald",
146
- text_size="sm",
147
- spacing_size="md",
148
- radius_size="lg"
149
- ).set(
150
- body_background_fill="#f0fdf4",
151
- body_background_fill_dark="#064e3b",
152
- background_fill_primary="#059669",
153
- background_fill_secondary="#ecfdf5",
154
- border_color_primary="#bbf7d0",
155
- block_background_fill="#ffffff",
156
- block_border_color="#d1fae5",
157
- body_text_color="#064e3b",
158
- body_text_color_dark="#f0fdf4",
159
- block_label_text_color="#064e3b",
160
- block_label_text_color_dark="#f0fdf4",
161
- block_title_text_color="#059669",
162
- block_title_text_color_dark="#10b981"
163
- ),
164
- "description": "Nature-inspired green earth tones"
165
- },
166
- "High Contrast": {
167
- "theme": gr.themes.Base(
168
- primary_hue="yellow",
169
- secondary_hue="slate",
170
- neutral_hue="slate",
171
- text_size="lg",
172
- spacing_size="lg",
173
- radius_size="sm"
174
- ).set(
175
- body_background_fill="#ffffff",
176
- body_background_fill_dark="#ffffff",
177
- background_fill_primary="#000000",
178
- background_fill_secondary="#ffffff",
179
- border_color_primary="#000000",
180
- block_background_fill="#ffffff",
181
- block_border_color="#000000",
182
- body_text_color="#000000",
183
- body_text_color_dark="#000000",
184
- block_label_text_color="#000000",
185
- block_label_text_color_dark="#000000",
186
- block_title_text_color="#000000",
187
- block_title_text_color_dark="#000000",
188
- input_background_fill="#ffffff",
189
- input_background_fill_dark="#ffffff",
190
- input_border_color="#000000",
191
- input_border_color_dark="#000000",
192
- button_primary_background_fill="#ffff00",
193
- button_primary_border_color="#000000",
194
- button_secondary_background_fill="#ffffff",
195
- button_secondary_border_color="#000000"
196
- ),
197
- "description": "Accessibility-focused high visibility"
198
- },
199
- "Developer": {
200
- "theme": gr.themes.Base(
201
- primary_hue="blue",
202
- secondary_hue="slate",
203
- neutral_hue="slate",
204
- text_size="sm",
205
- spacing_size="sm",
206
- radius_size="sm",
207
- font="Consolas"
208
- ).set(
209
- # VS Code exact colors
210
- body_background_fill="#1e1e1e", # VS Code editor background
211
- body_background_fill_dark="#1e1e1e",
212
- background_fill_primary="#007acc", # VS Code blue accent
213
- background_fill_secondary="#252526", # VS Code sidebar background
214
- border_color_primary="#3e3e42", # VS Code border color
215
- block_background_fill="#252526", # VS Code panel background
216
- block_border_color="#3e3e42", # VS Code subtle borders
217
- body_text_color="#cccccc", # VS Code default text
218
- body_text_color_dark="#cccccc",
219
- block_label_text_color="#cccccc",
220
- block_label_text_color_dark="#cccccc",
221
- block_title_text_color="#ffffff", # VS Code active text
222
- block_title_text_color_dark="#ffffff",
223
- input_background_fill="#2d2d30", # VS Code input background
224
- input_background_fill_dark="#2d2d30",
225
- input_border_color="#3e3e42", # VS Code input border
226
- input_border_color_dark="#3e3e42",
227
- input_border_color_focus="#007acc", # VS Code focus border
228
- input_border_color_focus_dark="#007acc",
229
- button_primary_background_fill="#007acc", # VS Code button blue
230
- button_primary_border_color="#007acc",
231
- button_primary_background_fill_hover="#0e639c", # VS Code button hover
232
- button_secondary_background_fill="#2d2d30",
233
- button_secondary_border_color="#3e3e42",
234
- button_secondary_text_color="#cccccc"
235
- ),
236
- "description": "Authentic VS Code dark theme with exact color matching"
237
- }
238
- }
239
-
240
- # Additional theme information for developers
241
- THEME_FEATURES = {
242
- "Default": ["Orange accents", "Clean layout", "Standard Gradio look"],
243
- "Base": ["Blue accents", "Minimal styling", "Clean foundation"],
244
- "Soft": ["Rounded corners", "Emerald colors", "Comfortable viewing"],
245
- "Monochrome": ["Black & white", "High elegance", "Timeless design"],
246
- "Glass": ["Glassmorphism", "Blur effects", "Translucent elements"],
247
- "Dark Ocean": ["Deep blue palette", "Dark theme", "Easy on eyes"],
248
- "Cyberpunk": ["Neon cyan/magenta", "Futuristic fonts", "Cyber vibes"],
249
- "Forest": ["Nature inspired", "Green tones", "Organic rounded"],
250
- "High Contrast": ["Black/white/yellow", "High visibility", "Accessibility"],
251
- "Developer": ["Authentic VS Code colors", "Consolas/Monaco fonts", "Exact theme matching"]
252
- }
253
-
254
- # Load saved theme and apply it
255
- current_theme_name = get_saved_theme()
256
- current_theme = THEME_CONFIGS[current_theme_name]["theme"]
257
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anycoder_app/ui.py DELETED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -1,31 +1,54 @@
1
- """
2
- AnyCoder - AI Code Generator
3
- Main application entry point - now with modular architecture!
4
- """
5
 
6
- # Import initialization functions from modules
7
- from anycoder_app.docs_manager import (
8
- initialize_gradio_docs,
9
- initialize_comfyui_docs,
10
- initialize_fastrtc_docs
11
- )
12
- from anycoder_app.ui import demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- if __name__ == "__main__":
15
- # Initialize documentation systems
16
- print("Initializing Gradio documentation...")
17
- initialize_gradio_docs()
18
-
19
- print("Initializing ComfyUI documentation...")
20
- initialize_comfyui_docs()
21
-
22
- print("Initializing FastRTC documentation...")
23
- initialize_fastrtc_docs()
24
-
25
- # Launch the application
26
- print("Launching AnyCoder application...")
27
- demo.queue(api_open=False, default_concurrency_limit=20).launch(
28
- show_api=False,
29
- ssr_mode=True,
30
- mcp_server=False
31
  )
 
 
 
 
1
+ from app_huggingface import demo as demo_huggingface
2
+ from app_gemini_coder import demo as demo_gemini
3
+ from utils import get_app
4
+ import gradio as gr
5
 
6
+ # Create mapping of providers to their code snippets
7
+ PROVIDER_SNIPPETS = {
8
+ "Hugging Face": """
9
+ import gradio as gr
10
+ import ai_gradio
11
+ gr.load(
12
+ name='huggingface:deepseek-ai/DeepSeek-R1',
13
+ src=ai_gradio.registry,
14
+ coder=True,
15
+ provider="together"
16
+ ).launch()""",
17
+ "Gemini Coder": """
18
+ import gradio as gr
19
+ import ai_gradio
20
+ gr.load(
21
+ name='gemini:gemini-2.5-pro-exp-03-25',
22
+ src=ai_gradio.registry,
23
+ coder=True,
24
+ provider="together"
25
+ ).launch()
26
+ """,
27
+ }
28
+ # Create mapping of providers to their demos
29
+ PROVIDERS = {
30
+ "Hugging Face": demo_huggingface,
31
+ "Gemini Coder": demo_gemini,
32
+ }
33
 
34
+ # Modified get_app implementation
35
+ demo = gr.Blocks()
36
+ with demo:
37
+
38
+ provider_dropdown = gr.Dropdown(choices=list(PROVIDERS.keys()), value="Hugging Face", label="Select code snippet")
39
+ code_display = gr.Code(label="Provider Code Snippet", language="python", value=PROVIDER_SNIPPETS["Hugging Face"])
40
+
41
+ def update_code(provider):
42
+ return PROVIDER_SNIPPETS.get(provider, "Code snippet not available")
43
+
44
+ provider_dropdown.change(fn=update_code, inputs=[provider_dropdown], outputs=[code_display])
45
+
46
+ selected_demo = get_app(
47
+ models=list(PROVIDERS.keys()),
48
+ default_model="Hugging Face",
49
+ src=PROVIDERS,
50
+ dropdown_label="Select Provider",
51
  )
52
+
53
+ if __name__ == "__main__":
54
+ demo.queue(api_open=False).launch(show_api=False)
app.py.backup DELETED
The diff for this file is too large to render. See raw diff
 
app_allenai.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_client import Client
3
+
4
+ MODELS = {"OLMo-2-1124-13B-Instruct": "akhaliq/olmo-anychat", "Llama-3.1-Tulu-3-8B": "akhaliq/allen-test"}
5
+
6
+
7
+ def create_chat_fn(client):
8
+ def chat(message, history):
9
+ response = client.predict(
10
+ message=message,
11
+ system_prompt="You are a helpful AI assistant.",
12
+ temperature=0.7,
13
+ max_new_tokens=1024,
14
+ top_k=40,
15
+ repetition_penalty=1.1,
16
+ top_p=0.95,
17
+ api_name="/chat",
18
+ )
19
+ return response
20
+
21
+ return chat
22
+
23
+
24
+ def set_client_for_session(model_name, request: gr.Request):
25
+ headers = {}
26
+ if request and hasattr(request, "request") and hasattr(request.request, "headers"):
27
+ x_ip_token = request.request.headers.get("x-ip-token")
28
+ if x_ip_token:
29
+ headers["X-IP-Token"] = x_ip_token
30
+
31
+ return Client(MODELS[model_name], headers=headers)
32
+
33
+
34
+ def safe_chat_fn(message, history, client):
35
+ if client is None:
36
+ return "Error: Client not initialized. Please refresh the page."
37
+ return create_chat_fn(client)(message, history)
38
+
39
+
40
+ with gr.Blocks() as demo:
41
+ client = gr.State()
42
+
43
+ model_dropdown = gr.Dropdown(
44
+ choices=list(MODELS.keys()), value="OLMo-2-1124-13B-Instruct", label="Select Model", interactive=True
45
+ )
46
+
47
+ chat_interface = gr.ChatInterface(fn=safe_chat_fn, additional_inputs=[client])
48
+
49
+ # Update client when model changes
50
+ def update_model(model_name, request):
51
+ return set_client_for_session(model_name, request)
52
+
53
+ model_dropdown.change(
54
+ fn=update_model,
55
+ inputs=[model_dropdown],
56
+ outputs=[client],
57
+ )
58
+
59
+ # Initialize client on page load
60
+ demo.load(
61
+ fn=set_client_for_session,
62
+ inputs=gr.State("OLMo-2-1124-13B-Instruct"),
63
+ outputs=client,
64
+ )
65
+
66
+ if __name__ == "__main__":
67
+ demo.launch()
app_cerebras.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cerebras_gradio
4
+
5
+ from utils import get_app
6
+
7
+ demo = get_app(
8
+ models=[
9
+ "llama3.1-8b",
10
+ "llama3.1-70b",
11
+ "llama3.1-405b",
12
+ ],
13
+ default_model="llama3.1-70b",
14
+ src=cerebras_gradio.registry,
15
+ accept_token=not os.getenv("CEREBRAS_API_KEY"),
16
+ )
17
+
18
+ if __name__ == "__main__":
19
+ demo.launch()
app_claude.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import anthropic_gradio
4
+
5
+ from utils import get_app
6
+
7
+ demo = get_app(
8
+ models=[
9
+ "claude-3-5-sonnet-20241022",
10
+ "claude-3-5-haiku-20241022",
11
+ "claude-3-opus-20240229",
12
+ "claude-3-sonnet-20240229",
13
+ "claude-3-haiku-20240307",
14
+ ],
15
+ default_model="claude-3-5-sonnet-20241022",
16
+ src=anthropic_gradio.registry,
17
+ accept_token=not os.getenv("ANTHROPIC_API_KEY"),
18
+ )
19
+
20
+ if __name__ == "__main__":
21
+ demo.launch()
app_cohere.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cohere_gradio
4
+
5
+ from utils import get_app
6
+
7
+ demo = get_app(
8
+ models=[
9
+ "command-r",
10
+ "command-r-08-2024",
11
+ "command-r-plus",
12
+ "command-r-plus-08-2024",
13
+ "command-r7b-12-2024",
14
+ ],
15
+ default_model="command-r7b-12-2024",
16
+ src=cohere_gradio.registry,
17
+ accept_token=not os.getenv("COHERE_API_KEY"),
18
+ )
19
+
20
+ if __name__ == "__main__":
21
+ demo.launch()
app_compare.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import google.generativeai as genai
4
+ import gradio as gr
5
+ import openai
6
+ from anthropic import Anthropic
7
+ from openai import OpenAI # Add explicit OpenAI import
8
+
9
+
10
+ def get_all_models():
11
+ """Get all available models from the registries."""
12
+ return [
13
+ "SambaNova: Meta-Llama-3.2-1B-Instruct",
14
+ "SambaNova: Meta-Llama-3.2-3B-Instruct",
15
+ "SambaNova: Llama-3.2-11B-Vision-Instruct",
16
+ "SambaNova: Llama-3.2-90B-Vision-Instruct",
17
+ "SambaNova: Meta-Llama-3.1-8B-Instruct",
18
+ "SambaNova: Meta-Llama-3.1-70B-Instruct",
19
+ "SambaNova: Meta-Llama-3.1-405B-Instruct",
20
+ "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
21
+ "Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
22
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
23
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
24
+ "Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
25
+ "Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
26
+ "Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
27
+ "Hyperbolic: deepseek-ai/DeepSeek-V2.5",
28
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
29
+ ]
30
+
31
+
32
+ def generate_discussion_prompt(original_question: str, previous_responses: list[str]) -> str:
33
+ """Generate a prompt for models to discuss and build upon previous
34
+ responses.
35
+ """
36
+ prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
37
+
38
+ Previous responses from other AI models:
39
+ {chr(10).join(f"- {response}" for response in previous_responses)}
40
+
41
+ Please provide your perspective while:
42
+ 1. Acknowledging key insights from previous responses
43
+ 2. Adding any missing important points
44
+ 3. Respectfully noting if you disagree with anything and explaining why
45
+ 4. Building towards a complete answer
46
+
47
+ Keep your response focused and concise (max 3-4 paragraphs)."""
48
+ return prompt
49
+
50
+
51
+ def generate_consensus_prompt(original_question: str, discussion_history: list[str]) -> str:
52
+ """Generate a prompt for final consensus building."""
53
+ return f"""Review this multi-AI discussion about: "{original_question}"
54
+
55
+ Discussion history:
56
+ {chr(10).join(discussion_history)}
57
+
58
+ As a final synthesizer, please:
59
+ 1. Identify the key points where all models agreed
60
+ 2. Explain how any disagreements were resolved
61
+ 3. Present a clear, unified answer that represents our collective best understanding
62
+ 4. Note any remaining uncertainties or caveats
63
+
64
+ Keep the final consensus concise but complete."""
65
+
66
+
67
+ def chat_with_openai(model: str, messages: list[dict], api_key: str | None) -> str:
68
+ import openai
69
+
70
+ client = openai.OpenAI(api_key=api_key)
71
+ response = client.chat.completions.create(model=model, messages=messages)
72
+ return response.choices[0].message.content
73
+
74
+
75
+ def chat_with_anthropic(messages: list[dict], api_key: str | None) -> str:
76
+ """Chat with Anthropic's Claude model."""
77
+ client = Anthropic(api_key=api_key)
78
+ response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024)
79
+ return response.content[0].text
80
+
81
+
82
+ def chat_with_gemini(messages: list[dict], api_key: str | None) -> str:
83
+ """Chat with Gemini Pro model."""
84
+ genai.configure(api_key=api_key)
85
+ model = genai.GenerativeModel("gemini-pro")
86
+
87
+ # Convert messages to Gemini format
88
+ gemini_messages = []
89
+ for msg in messages:
90
+ role = "user" if msg["role"] == "user" else "model"
91
+ gemini_messages.append({"role": role, "parts": [msg["content"]]})
92
+
93
+ response = model.generate_content([m["parts"][0] for m in gemini_messages])
94
+ return response.text
95
+
96
+
97
+ def chat_with_sambanova(
98
+ messages: list[dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct"
99
+ ) -> str:
100
+ """Chat with SambaNova's models using their OpenAI-compatible API."""
101
+ client = openai.OpenAI(
102
+ api_key=api_key,
103
+ base_url="https://api.sambanova.ai/v1",
104
+ )
105
+
106
+ response = client.chat.completions.create(
107
+ model=model_name,
108
+ messages=messages,
109
+ temperature=0.1,
110
+ top_p=0.1, # Use the specific model name passed in
111
+ )
112
+ return response.choices[0].message.content
113
+
114
+
115
+ def chat_with_hyperbolic(
116
+ messages: list[dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct"
117
+ ) -> str:
118
+ """Chat with Hyperbolic's models using their OpenAI-compatible API."""
119
+ client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1")
120
+
121
+ # Add system message to the start of the messages list
122
+ full_messages = [
123
+ {"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
124
+ *messages,
125
+ ]
126
+
127
+ response = client.chat.completions.create(
128
+ model=model_name, # Use the specific model name passed in
129
+ messages=full_messages,
130
+ temperature=0.7,
131
+ max_tokens=1024,
132
+ )
133
+ return response.choices[0].message.content
134
+
135
+
136
+ def multi_model_consensus(
137
+ question: str, selected_models: list[str], rounds: int = 3, progress: gr.Progress = gr.Progress()
138
+ ) -> list[tuple[str, str]]:
139
+ if not selected_models:
140
+ raise gr.Error("Please select at least one model to chat with.")
141
+
142
+ chat_history = []
143
+ progress(0, desc="Getting responses from all models...")
144
+
145
+ # Get responses from all models in parallel
146
+ for i, model in enumerate(selected_models):
147
+ provider, model_name = model.split(": ", 1)
148
+ progress((i + 1) / len(selected_models), desc=f"Getting response from {model}...")
149
+
150
+ try:
151
+ if provider == "Anthropic":
152
+ api_key = os.getenv("ANTHROPIC_API_KEY")
153
+ response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key)
154
+ elif provider == "SambaNova":
155
+ api_key = os.getenv("SAMBANOVA_API_KEY")
156
+ response = chat_with_sambanova(
157
+ messages=[
158
+ {"role": "system", "content": "You are a helpful assistant"},
159
+ {"role": "user", "content": question},
160
+ ],
161
+ api_key=api_key,
162
+ model_name=model_name,
163
+ )
164
+ elif provider == "Hyperbolic":
165
+ api_key = os.getenv("HYPERBOLIC_API_KEY")
166
+ response = chat_with_hyperbolic(
167
+ messages=[{"role": "user", "content": question}],
168
+ api_key=api_key,
169
+ model_name=model_name,
170
+ )
171
+ else: # Gemini
172
+ api_key = os.getenv("GEMINI_API_KEY")
173
+ response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key)
174
+
175
+ chat_history.append((model, response))
176
+ except Exception as e:
177
+ chat_history.append((model, f"Error: {e!s}"))
178
+
179
+ progress(1.0, desc="Done!")
180
+ return chat_history
181
+
182
+
183
+ with gr.Blocks() as demo:
184
+ gr.Markdown("# Model Response Comparison")
185
+ gr.Markdown("""Select multiple models to compare their responses""")
186
+
187
+ with gr.Row():
188
+ with gr.Column():
189
+ model_selector = gr.Dropdown(
190
+ choices=get_all_models(),
191
+ multiselect=True,
192
+ label="Select Models",
193
+ info="Choose models to compare",
194
+ value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
195
+ )
196
+
197
+ chatbot = gr.Chatbot(height=600, label="Model Responses")
198
+ msg = gr.Textbox(label="Prompt", placeholder="Ask a question to compare model responses...")
199
+
200
+ def respond(message, selected_models):
201
+ chat_history = multi_model_consensus(message, selected_models, rounds=1)
202
+ return chat_history
203
+
204
+ msg.submit(respond, [msg, model_selector], [chatbot])
205
+
206
+ for fn in demo.fns.values():
207
+ fn.api_name = False
208
+
209
+ if __name__ == "__main__":
210
+ demo.launch()
app_crew.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+ import gradio as gr
3
+
4
+ demo = gr.load(
5
+ name="crewai:gpt-4-turbo",
6
+ crew_type="article", # or 'support'
7
+ src=ai_gradio.registry,
8
+ )
app_deepseek.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ DEEPSEEK_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("deepseek:")]
7
+
8
+ # Create display names without the prefix
9
+ DEEPSEEK_MODELS_DISPLAY = [k.replace("deepseek:", "") for k in DEEPSEEK_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=DEEPSEEK_MODELS_FULL, # Use the full names with prefix
15
+ default_model=DEEPSEEK_MODELS_FULL[-1],
16
+ dropdown_label="Select DeepSeek Model",
17
+ choices=DEEPSEEK_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True,
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_experimental.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+
4
+ import google.generativeai as genai
5
+ import gradio as gr
6
+ import openai
7
+ from anthropic import Anthropic
8
+ from openai import OpenAI # Add explicit OpenAI import
9
+
10
+
11
+ def get_all_models():
12
+ """Get all available models from the registries."""
13
+ return [
14
+ "SambaNova: Meta-Llama-3.2-1B-Instruct",
15
+ "SambaNova: Meta-Llama-3.2-3B-Instruct",
16
+ "SambaNova: Llama-3.2-11B-Vision-Instruct",
17
+ "SambaNova: Llama-3.2-90B-Vision-Instruct",
18
+ "SambaNova: Meta-Llama-3.1-8B-Instruct",
19
+ "SambaNova: Meta-Llama-3.1-70B-Instruct",
20
+ "SambaNova: Meta-Llama-3.1-405B-Instruct",
21
+ "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
22
+ "Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
23
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
24
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
25
+ "Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
26
+ "Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
27
+ "Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
28
+ "Hyperbolic: deepseek-ai/DeepSeek-V2.5",
29
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
30
+ ]
31
+
32
+
33
+ def generate_discussion_prompt(original_question: str, previous_responses: list[str]) -> str:
34
+ """Generate a prompt for models to discuss and build upon previous
35
+ responses.
36
+ """
37
+ prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
38
+
39
+ Previous responses from other AI models:
40
+ {chr(10).join(f"- {response}" for response in previous_responses)}
41
+
42
+ Please provide your perspective while:
43
+ 1. Acknowledging key insights from previous responses
44
+ 2. Adding any missing important points
45
+ 3. Respectfully noting if you disagree with anything and explaining why
46
+ 4. Building towards a complete answer
47
+
48
+ Keep your response focused and concise (max 3-4 paragraphs)."""
49
+ return prompt
50
+
51
+
52
+ def generate_consensus_prompt(original_question: str, discussion_history: list[str]) -> str:
53
+ """Generate a prompt for final consensus building."""
54
+ return f"""Review this multi-AI discussion about: "{original_question}"
55
+
56
+ Discussion history:
57
+ {chr(10).join(discussion_history)}
58
+
59
+ As a final synthesizer, please:
60
+ 1. Identify the key points where all models agreed
61
+ 2. Explain how any disagreements were resolved
62
+ 3. Present a clear, unified answer that represents our collective best understanding
63
+ 4. Note any remaining uncertainties or caveats
64
+
65
+ Keep the final consensus concise but complete."""
66
+
67
+
68
+ def chat_with_openai(model: str, messages: list[dict], api_key: str | None) -> str:
69
+ import openai
70
+
71
+ client = openai.OpenAI(api_key=api_key)
72
+ response = client.chat.completions.create(model=model, messages=messages)
73
+ return response.choices[0].message.content
74
+
75
+
76
+ def chat_with_anthropic(messages: list[dict], api_key: str | None) -> str:
77
+ """Chat with Anthropic's Claude model."""
78
+ client = Anthropic(api_key=api_key)
79
+ response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024)
80
+ return response.content[0].text
81
+
82
+
83
+ def chat_with_gemini(messages: list[dict], api_key: str | None) -> str:
84
+ """Chat with Gemini Pro model."""
85
+ genai.configure(api_key=api_key)
86
+ model = genai.GenerativeModel("gemini-pro")
87
+
88
+ # Convert messages to Gemini format
89
+ gemini_messages = []
90
+ for msg in messages:
91
+ role = "user" if msg["role"] == "user" else "model"
92
+ gemini_messages.append({"role": role, "parts": [msg["content"]]})
93
+
94
+ response = model.generate_content([m["parts"][0] for m in gemini_messages])
95
+ return response.text
96
+
97
+
98
+ def chat_with_sambanova(
99
+ messages: list[dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct"
100
+ ) -> str:
101
+ """Chat with SambaNova's models using their OpenAI-compatible API."""
102
+ client = openai.OpenAI(
103
+ api_key=api_key,
104
+ base_url="https://api.sambanova.ai/v1",
105
+ )
106
+
107
+ response = client.chat.completions.create(
108
+ model=model_name,
109
+ messages=messages,
110
+ temperature=0.1,
111
+ top_p=0.1, # Use the specific model name passed in
112
+ )
113
+ return response.choices[0].message.content
114
+
115
+
116
+ def chat_with_hyperbolic(
117
+ messages: list[dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct"
118
+ ) -> str:
119
+ """Chat with Hyperbolic's models using their OpenAI-compatible API."""
120
+ client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1")
121
+
122
+ # Add system message to the start of the messages list
123
+ full_messages = [
124
+ {"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
125
+ *messages,
126
+ ]
127
+
128
+ response = client.chat.completions.create(
129
+ model=model_name, # Use the specific model name passed in
130
+ messages=full_messages,
131
+ temperature=0.7,
132
+ max_tokens=1024,
133
+ )
134
+ return response.choices[0].message.content
135
+
136
+
137
+ def multi_model_consensus(
138
+ question: str, selected_models: list[str], rounds: int = 3, progress: gr.Progress = gr.Progress()
139
+ ) -> list[tuple[str, str]]:
140
+ if not selected_models:
141
+ raise gr.Error("Please select at least one model to chat with.")
142
+
143
+ chat_history = []
144
+ discussion_history = []
145
+
146
+ # Initial responses
147
+ progress(0, desc="Getting initial responses...")
148
+ initial_responses = []
149
+ for i, model in enumerate(selected_models):
150
+ provider, model_name = model.split(": ", 1)
151
+
152
+ try:
153
+ if provider == "Anthropic":
154
+ api_key = os.getenv("ANTHROPIC_API_KEY")
155
+ response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key)
156
+ elif provider == "SambaNova":
157
+ api_key = os.getenv("SAMBANOVA_API_KEY")
158
+ response = chat_with_sambanova(
159
+ messages=[
160
+ {"role": "system", "content": "You are a helpful assistant"},
161
+ {"role": "user", "content": question},
162
+ ],
163
+ api_key=api_key,
164
+ )
165
+ elif provider == "Hyperbolic": # Add Hyperbolic case
166
+ api_key = os.getenv("HYPERBOLIC_API_KEY")
167
+ response = chat_with_hyperbolic(messages=[{"role": "user", "content": question}], api_key=api_key)
168
+ else: # Gemini
169
+ api_key = os.getenv("GEMINI_API_KEY")
170
+ response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key)
171
+
172
+ initial_responses.append(f"{model}: {response}")
173
+ discussion_history.append(f"Initial response from {model}:\n{response}")
174
+ chat_history.append((f"Initial response from {model}", response))
175
+ except Exception as e:
176
+ chat_history.append((f"Error from {model}", str(e)))
177
+
178
+ # Discussion rounds
179
+ for round_num in range(rounds):
180
+ progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...")
181
+ round_responses = []
182
+
183
+ random.shuffle(selected_models) # Randomize order each round
184
+ for model in selected_models:
185
+ provider, model_name = model.split(": ", 1)
186
+
187
+ try:
188
+ discussion_prompt = generate_discussion_prompt(question, discussion_history)
189
+ if provider == "Anthropic":
190
+ api_key = os.getenv("ANTHROPIC_API_KEY")
191
+ response = chat_with_anthropic(
192
+ messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
193
+ )
194
+ elif provider == "SambaNova":
195
+ api_key = os.getenv("SAMBANOVA_API_KEY")
196
+ response = chat_with_sambanova(
197
+ messages=[
198
+ {"role": "system", "content": "You are a helpful assistant"},
199
+ {"role": "user", "content": discussion_prompt},
200
+ ],
201
+ api_key=api_key,
202
+ )
203
+ elif provider == "Hyperbolic": # Add Hyperbolic case
204
+ api_key = os.getenv("HYPERBOLIC_API_KEY")
205
+ response = chat_with_hyperbolic(
206
+ messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
207
+ )
208
+ else: # Gemini
209
+ api_key = os.getenv("GEMINI_API_KEY")
210
+ response = chat_with_gemini(
211
+ messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
212
+ )
213
+
214
+ round_responses.append(f"{model}: {response}")
215
+ discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
216
+ chat_history.append((f"Round {round_num + 1} - {model}", response))
217
+ except Exception as e:
218
+ chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
219
+
220
+ # Final consensus
221
+ progress(0.9, desc="Building final consensus...")
222
+ model = selected_models[0]
223
+ provider, model_name = model.split(": ", 1)
224
+
225
+ try:
226
+ consensus_prompt = generate_consensus_prompt(question, discussion_history)
227
+ if provider == "Anthropic":
228
+ api_key = os.getenv("ANTHROPIC_API_KEY")
229
+ final_consensus = chat_with_anthropic(
230
+ messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
231
+ )
232
+ elif provider == "SambaNova":
233
+ api_key = os.getenv("SAMBANOVA_API_KEY")
234
+ final_consensus = chat_with_sambanova(
235
+ messages=[
236
+ {"role": "system", "content": "You are a helpful assistant"},
237
+ {"role": "user", "content": consensus_prompt},
238
+ ],
239
+ api_key=api_key,
240
+ )
241
+ elif provider == "Hyperbolic": # Add Hyperbolic case
242
+ api_key = os.getenv("HYPERBOLIC_API_KEY")
243
+ final_consensus = chat_with_hyperbolic(
244
+ messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
245
+ )
246
+ else: # Gemini
247
+ api_key = os.getenv("GEMINI_API_KEY")
248
+ final_consensus = chat_with_gemini(
249
+ messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
250
+ )
251
+ except Exception as e:
252
+ final_consensus = f"Error getting consensus from {model}: {e!s}"
253
+
254
+ chat_history.append(("Final Consensus", final_consensus))
255
+
256
+ progress(1.0, desc="Done!")
257
+ return chat_history
258
+
259
+
260
+ with gr.Blocks() as demo:
261
+ gr.Markdown("# Experimental Multi-Model Consensus Chat")
262
+ gr.Markdown(
263
+ """Select multiple models to collaborate on answering your question.
264
+ The models will discuss with each other and attempt to reach a consensus.
265
+ Maximum 3 models can be selected at once."""
266
+ )
267
+
268
+ with gr.Row():
269
+ with gr.Column():
270
+ model_selector = gr.Dropdown(
271
+ choices=get_all_models(),
272
+ multiselect=True,
273
+ label="Select Models (max 3)",
274
+ info="Choose up to 3 models to participate in the discussion",
275
+ value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
276
+ max_choices=3,
277
+ )
278
+ rounds_slider = gr.Slider(
279
+ minimum=1,
280
+ maximum=2,
281
+ value=1,
282
+ step=1,
283
+ label="Discussion Rounds",
284
+ info="Number of rounds of discussion between models",
285
+ )
286
+
287
+ chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion")
288
+ msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...")
289
+
290
+ def respond(message, selected_models, rounds):
291
+ chat_history = multi_model_consensus(message, selected_models, rounds)
292
+ return chat_history
293
+
294
+ msg.submit(respond, [msg, model_selector, rounds_slider], [chatbot], api_name="consensus_chat")
295
+
296
+ for fn in demo.fns.values():
297
+ fn.api_name = False
298
+
299
+ if __name__ == "__main__":
300
+ demo.launch()
app_fal.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fal_gradio
2
+
3
+ from utils import get_app
4
+
5
+ demo = get_app(
6
+ models=[
7
+ "fal-ai/ltx-video",
8
+ "fal-ai/ltx-video/image-to-video",
9
+ "fal-ai/luma-photon",
10
+ ],
11
+ default_model="fal-ai/luma-photon",
12
+ src=fal_gradio.registry,
13
+ )
14
+
15
+ if __name__ == "__main__":
16
+ demo.launch()
app_fireworks.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import fireworks_gradio
4
+
5
+ from utils import get_app
6
+
7
+ demo = get_app(
8
+ models=[
9
+ "f1-preview",
10
+ "f1-mini-preview",
11
+ "llama-v3p3-70b-instruct",
12
+ ],
13
+ default_model="llama-v3p3-70b-instruct",
14
+ src=fireworks_gradio.registry,
15
+ accept_token=not os.getenv("FIREWORKS_API_KEY"),
16
+ )
17
+
18
+ if __name__ == "__main__":
19
+ demo.launch()
app_gemini.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Gemini models but keep their full names for loading
6
+ GEMINI_MODELS_FULL = [k for k in ai_gradio.registry if k.startswith("gemini:")]
7
+
8
+ # Create display names without the prefix
9
+ GEMINI_MODELS_DISPLAY = [k.replace("gemini:", "") for k in GEMINI_MODELS_FULL]
10
+
11
+ # Create and launch the interface using get_app utility
12
+ demo = get_app(
13
+ models=GEMINI_MODELS_FULL, # Use the full names with prefix
14
+ default_model=GEMINI_MODELS_FULL[-1],
15
+ dropdown_label="Select Gemini Model",
16
+ choices=GEMINI_MODELS_DISPLAY, # Display names without prefix
17
+ src=ai_gradio.registry,
18
+ fill_height=True,
19
+ )
20
+
21
+ if __name__ == "__main__":
22
+ demo.launch()
app_gemini_camera.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Gemini models but keep their full names for loading
6
+ GEMINI_MODELS_FULL = [k for k in ai_gradio.registry if k.startswith("gemini:")]
7
+
8
+ # Create display names without the prefix
9
+ GEMINI_MODELS_DISPLAY = [k.replace("gemini:", "") for k in GEMINI_MODELS_FULL]
10
+
11
+ # Create and launch the interface using get_app utility
12
+ demo = get_app(
13
+ models=GEMINI_MODELS_FULL, # Use the full names with prefix
14
+ default_model=GEMINI_MODELS_FULL[-2],
15
+ dropdown_label="Select Gemini Model",
16
+ choices=GEMINI_MODELS_DISPLAY, # Display names without prefix
17
+ src=ai_gradio.registry,
18
+ camera=True,
19
+ fill_height=True,
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_gemini_coder.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Gemini models but keep their full names for loading
6
+ GEMINI_MODELS_FULL = [k for k in ai_gradio.registry if k.startswith("gemini:")]
7
+
8
+ # Create display names without the prefix
9
+ GEMINI_MODELS_DISPLAY = [k.replace("gemini:", "") for k in GEMINI_MODELS_FULL]
10
+
11
+ # Create and launch the interface using get_app utility
12
+ demo = get_app(
13
+ models=GEMINI_MODELS_FULL, # Use the full names with prefix
14
+ default_model=GEMINI_MODELS_FULL[0],
15
+ dropdown_label="Select Gemini Model",
16
+ choices=GEMINI_MODELS_DISPLAY, # Display names without prefix
17
+ src=ai_gradio.registry,
18
+ fill_height=True,
19
+ coder=True,
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_gemini_voice.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Gemini models but keep their full names for loading
6
+ GEMINI_MODELS_FULL = [k for k in ai_gradio.registry if k.startswith("gemini:")]
7
+
8
+ # Create display names without the prefix
9
+ GEMINI_MODELS_DISPLAY = [k.replace("gemini:", "") for k in GEMINI_MODELS_FULL]
10
+
11
+ # Create and launch the interface using get_app utility
12
+ demo = get_app(
13
+ models=GEMINI_MODELS_FULL, # Use the full names with prefix
14
+ default_model=GEMINI_MODELS_FULL[-2],
15
+ dropdown_label="Select Gemini Model",
16
+ choices=GEMINI_MODELS_DISPLAY, # Display names without prefix
17
+ src=ai_gradio.registry,
18
+ enable_voice=True,
19
+ fill_height=True,
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_groq.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Groq models from the registry
6
+ GROQ_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("groq:")]
7
+
8
+ # Create display names without the prefix
9
+ GROQ_MODELS_DISPLAY = [k.replace("groq:", "") for k in GROQ_MODELS_FULL]
10
+
11
+ demo = get_app(
12
+ models=GROQ_MODELS_FULL,
13
+ default_model=GROQ_MODELS_FULL[-2],
14
+ src=ai_gradio.registry,
15
+ dropdown_label="Select Groq Model",
16
+ choices=GROQ_MODELS_DISPLAY,
17
+ fill_height=True,
18
+ )
19
+
20
+ if __name__ == "__main__":
21
+ demo.launch()
app_groq_coder.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the Groq models but keep their full names for loading
6
+ GROQ_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("groq:")]
7
+
8
+ # Create display names without the prefix
9
+ GROQ_MODELS_DISPLAY = [k.replace("groq:", "") for k in GROQ_MODELS_FULL]
10
+
11
+ # Create and launch the interface using get_app utility
12
+ demo = get_app(
13
+ models=GROQ_MODELS_FULL, # Use the full names with prefix
14
+ default_model=GROQ_MODELS_FULL[-1],
15
+ dropdown_label="Select Groq Model",
16
+ choices=GROQ_MODELS_DISPLAY, # Display names without prefix
17
+ fill_height=True,
18
+ coder=True,
19
+ )
20
+
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_hf.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils import get_app
2
+
3
+ demo = get_app(
4
+ models=[
5
+ "microsoft/Phi-3.5-mini-instruct",
6
+ "HuggingFaceTB/SmolLM2-1.7B-Instruct",
7
+ "google/gemma-2-2b-it",
8
+ "openai-community/gpt2",
9
+ "microsoft/phi-2",
10
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
11
+ ],
12
+ default_model="HuggingFaceTB/SmolLM2-1.7B-Instruct",
13
+ src="models",
14
+ )
15
+
16
+ if __name__ == "__main__":
17
+ demo.launch()
app_huggingface.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ HUGGINGFACE_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("huggingface:")]
7
+
8
+ # Create display names without the prefix
9
+ HUGGINGFACE_MODELS_DISPLAY = [k.replace("huggingface:", "") for k in HUGGINGFACE_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=HUGGINGFACE_MODELS_FULL, # Use the full names with prefix
15
+ default_model=HUGGINGFACE_MODELS_FULL[0],
16
+ dropdown_label="Select Huggingface Model",
17
+ choices=HUGGINGFACE_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True,
20
+ provider="fireworks-ai",
21
+ bill_to="huggingface"
22
+ )
app_hyperbolic.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ HYPERBOLIC_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("hyperbolic:")]
7
+
8
+ # Create display names without the prefix
9
+ HYPERBOLIC_MODELS_DISPLAY = [k.replace("hyperbolic:", "") for k in HYPERBOLIC_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=HYPERBOLIC_MODELS_FULL, # Use the full names with prefix
15
+ default_model=HYPERBOLIC_MODELS_FULL[-2],
16
+ dropdown_label="Select Hyperbolic Model",
17
+ choices=HYPERBOLIC_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ )
app_hyperbolic_coder.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ HYPERBOLIC_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("hyperbolic:")]
7
+
8
+ # Create display names without the prefix
9
+ HYPERBOLIC_MODELS_DISPLAY = [k.replace("hyperbolic:", "") for k in HYPERBOLIC_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=HYPERBOLIC_MODELS_FULL, # Use the full names with prefix
15
+ default_model=HYPERBOLIC_MODELS_FULL[-2],
16
+ dropdown_label="Select Hyperbolic Model",
17
+ choices=HYPERBOLIC_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True,
20
+ )
app_langchain.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ LANGCHAIN_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("langchain:")]
7
+
8
+ # Create display names without the prefix
9
+ LANGCHAIN_MODELS_DISPLAY = [k.replace("langchain:", "") for k in LANGCHAIN_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=LANGCHAIN_MODELS_FULL, # Use the full names with prefix
15
+ default_model=LANGCHAIN_MODELS_FULL[0],
16
+ dropdown_label="Select Langchain Model",
17
+ choices=LANGCHAIN_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ )
20
+
21
+ if __name__ == "__main__":
22
+ demo.launch()
23
+
app_lumaai.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import lumaai_gradio
3
+
4
+ demo = gr.load(
5
+ name="dream-machine",
6
+ src=lumaai_gradio.registry,
7
+ )
app_marco_o1.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import transformers_gradio
4
+
5
+ demo = gr.load(name="AIDC-AI/Marco-o1", src=transformers_gradio.registry)
6
+ demo.fn = spaces.GPU()(demo.fn)
7
+
8
+ for fn in demo.fns.values():
9
+ fn.api_name = False
10
+
11
+ if __name__ == "__main__":
12
+ demo.launch()
app_meta.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ demo = gr.load("models/meta-llama/Llama-3.3-70B-Instruct")
4
+
5
+ if __name__ == "__main__":
6
+ demo.launch()
app_mindsearch.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ # Load the Gradio space
4
+ demo = gr.load(name="internlm/MindSearch", src="spaces")
5
+
6
+ # Disable API access for all functions
7
+ if hasattr(demo, "fns"):
8
+ for fn in demo.fns.values():
9
+ fn.api_name = False
10
+
11
+ if __name__ == "__main__":
12
+ demo.launch()
app_minimax.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ MINIMAX_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("minimax:")]
7
+
8
+ # Create display names without the prefix
9
+ MINIMAX_MODELS_DISPLAY = [k.replace("minimax:", "") for k in MINIMAX_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=MINIMAX_MODELS_FULL, # Use the full names with prefix
15
+ default_model=MINIMAX_MODELS_FULL[0],
16
+ dropdown_label="Select Minimax Model",
17
+ choices=MINIMAX_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ )
20
+
21
+ if __name__ == "__main__":
22
+ demo.launch()
app_minimax_coder.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the hyperbolic models but keep their full names for loading
6
+ MINIMAX_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("minimax:")]
7
+
8
+ # Create display names without the prefix
9
+ MINIMAX_MODELS_DISPLAY = [k.replace("minimax:", "") for k in MINIMAX_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=MINIMAX_MODELS_FULL, # Use the full names with prefix
15
+ default_model=MINIMAX_MODELS_FULL[0],
16
+ dropdown_label="Select Minimax Model",
17
+ choices=MINIMAX_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_mistral.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the mistral models but keep their full names for loading
6
+ MISTRAL_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("mistral:")]
7
+
8
+ # Create display names without the prefix
9
+ MISTRAL_MODELS_DISPLAY = [k.replace("mistral:", "") for k in MISTRAL_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=MISTRAL_MODELS_FULL, # Use the full names with prefix
15
+ default_model=MISTRAL_MODELS_FULL[5],
16
+ dropdown_label="Select Mistral Model",
17
+ choices=MISTRAL_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()
app_moondream.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ # Load the Gradio space
4
+ demo = gr.load(name="akhaliq/moondream", src="spaces")
5
+
6
+
7
+ # Disable API access for all functions
8
+ if hasattr(demo, "fns"):
9
+ for fn in demo.fns.values():
10
+ fn.api_name = False
11
+
12
+ if __name__ == "__main__":
13
+ demo.launch()
app_nvidia.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the nvidia models but keep their full names for loading
6
+ NVIDIA_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("nvidia:")]
7
+
8
+ # Create display names without the prefix
9
+ NVIDIA_MODELS_DISPLAY = [k.replace("nvidia:", "") for k in NVIDIA_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=NVIDIA_MODELS_FULL, # Use the full names with prefix
15
+ default_model=NVIDIA_MODELS_FULL[0],
16
+ dropdown_label="Select Nvidia Model",
17
+ choices=NVIDIA_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ )
20
+
21
+ if __name__ == "__main__":
22
+ demo.launch()
app_nvidia_coder.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ai_gradio
2
+
3
+ from utils_ai_gradio import get_app
4
+
5
+ # Get the nvidia models but keep their full names for loading
6
+ NVIDIA_MODELS_FULL = [k for k in ai_gradio.registry.keys() if k.startswith("nvidia:")]
7
+
8
+ # Create display names without the prefix
9
+ NVIDIA_MODELS_DISPLAY = [k.replace("nvidia:", "") for k in NVIDIA_MODELS_FULL]
10
+
11
+
12
+ # Create and launch the interface using get_app utility
13
+ demo = get_app(
14
+ models=NVIDIA_MODELS_FULL, # Use the full names with prefix
15
+ default_model=NVIDIA_MODELS_FULL[-1],
16
+ dropdown_label="Select Nvidia Model",
17
+ choices=NVIDIA_MODELS_DISPLAY, # Display names without prefix
18
+ fill_height=True,
19
+ coder=True
20
+ )
21
+
22
+ if __name__ == "__main__":
23
+ demo.launch()