Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,429 Bytes
2412640 7f9da48 2412640 7f9da48 2412640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from PIL import Image
import numpy as np
from io import BytesIO
import spaces
# Initialize model globally
model = None
def load_model():
global model
if model is None:
model = AutoModelForCausalLM.from_pretrained(
"moondream/moondream3-preview",
trust_remote_code=True,
dtype=torch.bfloat16,
device_map={"": "cuda"},
)
model.compile()
return model
@spaces.GPU(duration=120)
def process_image(image, task, question, caption_length, object_query, reasoning, temperature, top_p, max_tokens):
model = load_model()
settings = {
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens
}
results = []
if task == "Query":
if image is not None:
result = model.query(
image=Image.fromarray(image),
question=question,
reasoning=reasoning,
settings=settings
)
return result["answer"], None, None
else:
result = model.query(
question=question,
reasoning=reasoning,
settings=settings
)
return result["answer"], None, None
elif task == "Caption":
if image is None:
return "Please upload an image for captioning", None, None
result = model.caption(
Image.fromarray(image),
length=caption_length.lower(),
settings=settings
)
return result["caption"], None, None
elif task == "Point":
if image is None:
return "Please upload an image for point detection", None, None
result = model.point(Image.fromarray(image), object_query)
# Visualize points on image
img_with_points = image.copy()
h, w = img_with_points.shape[:2]
points_text = "Points found:\n"
for i, point in enumerate(result.get("points", [])):
x = int(point['x'] * w)
y = int(point['y'] * h)
# Draw a red circle at each point
cv2_available = False
try:
import cv2
cv2.circle(img_with_points, (x, y), 10, (255, 0, 0), -1)
cv2_available = True
except:
# Fallback to numpy if cv2 not available
for dx in range(-5, 6):
for dy in range(-5, 6):
if dx*dx + dy*dy <= 25: # Circle with radius 5
px, py = x + dx, y + dy
if 0 <= px < w and 0 <= py < h:
img_with_points[py, px] = [255, 0, 0]
points_text += f"Point {i+1}: x={point['x']:.3f}, y={point['y']:.3f}\n"
return points_text, img_with_points, None
elif task == "Detect":
if image is None:
return "Please upload an image for object detection", None, None
detect_settings = settings.copy()
detect_settings["max_objects"] = 10
result = model.detect(Image.fromarray(image), object_query, settings=detect_settings)
# Visualize bounding boxes
img_with_boxes = image.copy()
h, w = img_with_boxes.shape[:2]
boxes_text = "Objects detected:\n"
for i, obj in enumerate(result.get("objects", [])):
x_min = int(obj['x_min'] * w)
y_min = int(obj['y_min'] * h)
x_max = int(obj['x_max'] * w)
y_max = int(obj['y_max'] * h)
# Draw bounding box
thickness = 3
# Top and bottom borders
img_with_boxes[y_min:y_min+thickness, x_min:x_max] = [0, 255, 0]
img_with_boxes[y_max-thickness:y_max, x_min:x_max] = [0, 255, 0]
# Left and right borders
img_with_boxes[y_min:y_max, x_min:x_min+thickness] = [0, 255, 0]
img_with_boxes[y_min:y_max, x_max-thickness:x_max] = [0, 255, 0]
boxes_text += f"Object {i+1}: x_min={obj['x_min']:.3f}, y_min={obj['y_min']:.3f}, x_max={obj['x_max']:.3f}, y_max={obj['y_max']:.3f}\n"
return boxes_text, None, img_with_boxes
with gr.Blocks(title="Moondream 3 Preview", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π Moondream 3 Preview - Vision Language Model
Experience the power of Moondream 3, a state-of-the-art vision language model with mixture-of-experts architecture.
This demo showcases all four skills: Query, Caption, Point, and Detect.
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Image (optional for Query)", type="numpy")
task_type = gr.Radio(
choices=["Query", "Caption", "Point", "Detect"],
value="Query",
label="Select Task"
)
with gr.Column(visible=True) as query_options:
question_input = gr.Textbox(
label="Question",
placeholder="Ask anything about the image or enter a text-only question",
lines=2
)
reasoning_toggle = gr.Checkbox(
label="Enable Reasoning (better for complex questions)",
value=True
)
with gr.Column(visible=False) as caption_options:
caption_length = gr.Radio(
choices=["Short", "Normal", "Long"],
value="Normal",
label="Caption Length"
)
with gr.Column(visible=False) as point_detect_options:
object_query_input = gr.Textbox(
label="Object to Find",
placeholder="e.g., 'person wearing red shirt', 'car', 'dog'",
lines=1
)
gr.Markdown("### Advanced Settings")
with gr.Accordion("Generation Parameters", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=512,
step=50,
label="Max Tokens"
)
submit_btn = gr.Button("π Process", variant="primary")
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Output",
lines=10,
show_copy_button=True
)
output_image_points = gr.Image(
label="Visualization (Points)",
visible=False
)
output_image_boxes = gr.Image(
label="Visualization (Bounding Boxes)",
visible=False
)
def update_interface(task):
return {
query_options: gr.Column(visible=(task == "Query")),
caption_options: gr.Column(visible=(task == "Caption")),
point_detect_options: gr.Column(visible=(task in ["Point", "Detect"])),
output_image_points: gr.Image(visible=False),
output_image_boxes: gr.Image(visible=False)
}
def process_and_update_visibility(image, task, question, caption_length, object_query, reasoning, temperature, top_p, max_tokens):
text_output, points_img, boxes_img = process_image(
image, task, question, caption_length, object_query, reasoning,
temperature, top_p, max_tokens
)
return {
output_text: text_output,
output_image_points: gr.Image(value=points_img, visible=(points_img is not None)),
output_image_boxes: gr.Image(value=boxes_img, visible=(boxes_img is not None))
}
task_type.change(
update_interface,
inputs=[task_type],
outputs=[query_options, caption_options, point_detect_options, output_image_points, output_image_boxes]
)
submit_btn.click(
process_and_update_visibility,
inputs=[
input_image, task_type, question_input, caption_length,
object_query_input, reasoning_toggle, temperature, top_p, max_tokens
],
outputs=[output_text, output_image_points, output_image_boxes]
)
gr.Examples(
examples=[
[None, "Query", "Explain the concept of neural networks", "Normal", "", True, 0.7, 0.95, 512],
[None, "Query", "What is the capital of France?", "Normal", "", False, 0.3, 0.95, 256],
],
inputs=[
input_image, task_type, question_input, caption_length,
object_query_input, reasoning_toggle, temperature, top_p, max_tokens
],
label="Example Queries"
)
gr.Markdown(
"""
### About Moondream 3
- **Architecture**: 9B total parameters, 2B active, with mixture-of-experts
- **Skills**: Query (Q&A), Caption, Point detection, Object detection
- **Features**: 32K context length, multi-crop high resolution processing
- **Model**: [moondream/moondream3-preview](https://huggingface.co/moondream/moondream3-preview)
### Tips:
- **Query**: Ask open-ended questions about images or use for text-only tasks
- **Caption**: Generate short, normal, or long descriptions of images
- **Point**: Find specific objects and get their coordinates
- **Detect**: Get bounding boxes for objects in images
- Enable reasoning for complex visual understanding tasks
"""
)
demo.launch() |