Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 9,563 Bytes
			
			b87c1b6 a89a6f4 d872fa5 a89a6f4 223a766 a89a6f4 d872fa5 a89a6f4  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249  | 
								import gradio as gr
import os
import tempfile
import shutil
from typing import Optional, Union
from pathlib import Path
from huggingface_hub import InferenceClient
# -------------------------
# Utilities
# -------------------------
def cleanup_temp_files():
    try:
        temp_dir = tempfile.gettempdir()
        for file_path in Path(temp_dir).glob("*.mp4"):
            try:
                import time
                if file_path.stat().st_mtime < (time.time() - 300):
                    file_path.unlink(missing_ok=True)
            except Exception:
                pass
    except Exception as e:
        print(f"Cleanup error: {e}")
def _client_from_token(token: Optional[str]) -> InferenceClient:
    if not token:
        raise gr.Error("Please sign in first. This app requires your Hugging Face login.")
    # IMPORTANT: do not set bill_to when using user OAuth tokens
    return InferenceClient(
        provider="fal-ai",
        api_key=token,
    )
def _save_bytes_as_temp_mp4(data: bytes) -> str:
    temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
    try:
        temp_file.write(data)
        temp_file.flush()
        return temp_file.name
    finally:
        temp_file.close()
# -------------------------
# Inference wrappers (no env fallback; always require LoginButton)
# -------------------------
def generate_video(
    prompt: str,
    token: gr.OAuthToken | None,
    duration: int = 8,          # kept for future use
    size: str = "1280x720",     # kept for future use
    *_                          # tolerate extra event payloads
) -> Optional[str]:
    if token is None or not getattr(token, "token", None):
        raise gr.Error("Sign in with Hugging Face to continue. This app uses your inference provider credits.")
    if not prompt or not prompt.strip():
        return None
    cleanup_temp_files()
    try:
        client = _client_from_token(token.token)
        # Ensure model id matches what users can access. Change if you intend provider repo.
        model_id = "akhaliq/sora-2"
        try:
            video_bytes = client.text_to_video(prompt, model=model_id)
        except Exception as e:
            # Provide a clearer message if this is an HTTP 403 from requests
            import requests
            if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
                raise gr.Error(
                    "Access denied by provider (403). Make sure your HF account has credits/permission "
                    f"for provider 'fal-ai' and model '{model_id}'."
                )
            raise
        return _save_bytes_as_temp_mp4(video_bytes)
    except gr.Error:
        raise
    except Exception:
        raise gr.Error("Generation failed. If this keeps happening, check your provider quota or try again later.")
def generate_video_from_image(
    image: Union[str, bytes, None],
    prompt: str,
    token: gr.OAuthToken | None,
    *_
) -> Optional[str]:
    if token is None or not getattr(token, "token", None):
        raise gr.Error("Sign in with Hugging Face to continue. This app uses your inference provider credits.")
    if not image or not prompt or not prompt.strip():
        return None
    cleanup_temp_files()
    try:
        # Load image bytes
        if isinstance(image, str):
            with open(image, "rb") as f:
                input_image = f.read()
        elif isinstance(image, (bytes, bytearray)):
            input_image = image
        else:
            return None
        client = _client_from_token(token.token)
        model_id = "akhaliq/sora-2-image-to-video"
        try:
            video_bytes = client.image_to_video(
                input_image,
                prompt=prompt,
                model=model_id,
            )
        except Exception as e:
            import requests
            if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
                raise gr.Error(
                    "Access denied by provider (403). Make sure your HF account has credits/permission "
                    f"for provider 'fal-ai' and model '{model_id}'."
                )
            raise
        return _save_bytes_as_temp_mp4(video_bytes)
    except gr.Error:
        raise
    except Exception:
        raise gr.Error("Generation failed. If this keeps happening, check your provider quota or try again later.")
# -------------------------
# UI
# -------------------------
def create_ui():
    css = '''
    .logo-dark{display: none}
    .dark .logo-dark{display: block !important}
    .dark .logo-light{display: none}
    #sub_title{margin-top: -20px !important}
    .notice {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 14px 16px;
        border-radius: 12px;
        margin: 18px auto 6px;
        max-width: 860px;
        text-align: center;
        font-size: 0.98rem;
    }
    '''
    with gr.Blocks(title="Sora-2 (uses your provider credits)", theme=gr.themes.Soft(), css=css) as demo:
        gr.HTML("""
            <div style="text-align:center; max-width:900px; margin:0 auto;">
                <h1 style="font-size:2.2em; margin-bottom:6px;">🎬 Sora-2</h1>
                <p style="color:#777; margin:0 0 8px;">Generate videos via the Hugging Face Inference API (provider: fal-ai)</p>
                <div class="notice">
                    <b>Heads up:</b> This is a paid app that uses <b>your</b> inference provider credits when you run generations.
                    Free users get <b>$0.10 in included credits</b>. <b>PRO users</b> get <b>$2 in included credits</b> 
                    and can continue using beyond that (with billing). 
                    <a href='http://huggingface.co/subscribe/pro?source=sora_2' target='_blank' style='color:#fff; text-decoration:underline; font-weight:bold;'>Subscribe to PRO</a> 
                    for more credits. Please sign in with your Hugging Face account to continue.
                </div>
                <p style="font-size: 0.9em; color: #999; margin-top: 10px;">
                    Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color:#fff; text-decoration:underline;">anycoder</a>
                </p>
            </div>
        """)
        login_btn = gr.LoginButton("Sign in with Hugging Face")
        # Text -> Video
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="Enter your prompt",
                    placeholder="Describe the video you want to create…",
                    lines=4,
                    elem_id="prompt-text-input"
                )
                generate_btn = gr.Button("🎥 Generate Video", variant="primary")
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="Generated Video",
                    height=400,
                    interactive=False,
                    show_download_button=True,
                    elem_id="text-to-video"
                )
        # Order of inputs: prompt, token
        generate_btn.click(
            fn=generate_video,
            inputs=[prompt_input, login_btn],
            outputs=[video_output],
        )
        # Image -> Video
        gr.HTML("""
            <div style="text-align:center; margin: 34px 0 10px;">
                <h3 style="margin-bottom:6px;">🖼️ ➜ 🎬 Image → Video (beta)</h3>
                <p style="color:#666; margin:0;">Turn a single image into a short video with a guiding prompt.</p>
            </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                image_input = gr.Image(label="Upload an image", type="filepath")
                img_prompt_input = gr.Textbox(
                    label="Describe how the scene should evolve",
                    placeholder="e.g., The cat starts to dance and spins playfully",
                    lines=3,
                    elem_id="img-prompt-text-input"
                )
                generate_img_btn = gr.Button("🎥 Generate from Image", variant="primary")
            with gr.Column(scale=1):
                video_output_img = gr.Video(
                    label="Generated Video (from Image)",
                    height=400,
                    interactive=False,
                    show_download_button=True,
                    elem_id="image-to-video"
                )
        # Order of inputs: image, prompt, token
        generate_img_btn.click(
            fn=generate_video_from_image,
            inputs=[image_input, img_prompt_input, login_btn],
            outputs=[video_output_img],
        )
        # Examples: keep UI-only (no automatic inference to avoid accidental charges)
        gr.Examples(
            examples=[["A majestic golden eagle soaring through a vibrant sunset sky"]],
            inputs=prompt_input
        )
    return demo
# -------------------------
# Entrypoint
# -------------------------
if __name__ == "__main__":
    try:
        cleanup_temp_files()
        if os.path.exists("gradio_cached_examples"):
            shutil.rmtree("gradio_cached_examples", ignore_errors=True)
    except Exception as e:
        print(f"Initial cleanup error: {e}")
    app = create_ui()
    app.queue(status_update_rate="auto", api_open=False, default_concurrency_limit=None)
    app.launch(show_api=False, enable_monitoring=False, quiet=True, ssr_mode=True) |