sora-2 / app.py
akhaliq's picture
akhaliq HF Staff
Update app.py
b87c1b6 verified
raw
history blame
11.7 kB
import gradio as gr
import os
import tempfile
import shutil
from typing import Optional, Tuple, Union
from huggingface_hub import InferenceClient, whoami
from pathlib import Path
# Initialize Hugging Face Inference Client with fal-ai provider
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"),
bill_to="huggingface",
)
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
if isinstance(token, gr.OAuthToken):
token_str = token.token
elif isinstance(token, str):
token_str = token
else:
return False
try:
user_info = whoami(token=token_str)
return (
user_info.get("isPro", False) or
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
)
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def cleanup_temp_files():
"""Clean up old temporary video files to prevent storage overflow."""
try:
temp_dir = tempfile.gettempdir()
# Clean up old .mp4 files in temp directory
for file_path in Path(temp_dir).glob("*.mp4"):
try:
# Remove files older than 5 minutes
import time
if file_path.stat().st_mtime < (time.time() - 300):
file_path.unlink(missing_ok=True)
except Exception:
pass
except Exception as e:
print(f"Cleanup error: {e}")
def generate_video(
prompt: str,
duration: int = 8,
size: str = "1280x720",
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider."""
cleanup_temp_files()
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "❌ Please set HF_TOKEN environment variable."
video_bytes = temp_client.text_to_video(
prompt,
model="akhaliq/sora-2",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "βœ… Video generated successfully!"
except Exception as e:
return None, f"❌ Error generating video: {str(e)}"
# --- NEW: image -> video support ---
def generate_video_from_image(
image: Union[str, bytes],
prompt: str,
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate a video from a single input image + prompt using Sora-2 image-to-video."""
cleanup_temp_files()
if not prompt or prompt.strip() == "":
return None, "❌ Please enter a prompt"
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "❌ Please set HF_TOKEN environment variable."
if isinstance(image, str):
with open(image, "rb") as f:
input_image = f.read()
elif isinstance(image, (bytes, bytearray)):
input_image = image
else:
return None, "❌ Invalid image input. Please upload an image."
video_bytes = temp_client.image_to_video(
input_image,
prompt=prompt,
model="akhaliq/sora-2-image-to-video",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "βœ… Video generated from image successfully!"
except Exception as e:
return None, f"❌ Error generating video from image: {str(e)}"
def generate_with_pro_auth(
prompt: str,
oauth_token: Optional[gr.OAuthToken] = None
) -> Tuple[Optional[str], str]:
"""Wrapper function that checks if user is PRO before generating video."""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This app is exclusively for Hugging Face PRO users.")
if not prompt or prompt.strip() == "":
return None, "❌ Please enter a prompt"
return generate_video(
prompt,
duration=8,
size="1280x720",
api_key=None
)
# --- NEW: PRO-gated wrapper for image -> video ---
def generate_with_pro_auth_image(
prompt: str,
image_path: Optional[str] = None,
oauth_token: Optional[gr.OAuthToken] = None
) -> Tuple[Optional[str], str]:
"""Checks PRO status then calls image->video generator."""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This app is exclusively for Hugging Face PRO users.")
if not image_path:
return None, "❌ Please upload an image"
return generate_video_from_image(image=image_path, prompt=prompt, api_key=None)
def simple_generate(prompt: str) -> Optional[str]:
"""Simplified wrapper for examples that only returns video."""
if not prompt or prompt.strip() == "":
return None
video_path, _ = generate_video(prompt, duration=8, size="1280x720", api_key=None)
return video_path
def create_ui():
css = '''
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
#sub_title{margin-top: -20px !important}
.pro-badge{
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 4px 12px;
border-radius: 20px;
font-size: 0.9em;
font-weight: bold;
display: inline-block;
margin-left: 8px;
}
'''
with gr.Blocks(title="Sora-2 Text-to-Video Generator", theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">
🎬 Sora-2 Text-to-Video Generator
<span class="pro-badge">PRO</span>
</h1>
<p style="font-size: 1.1em; color: #666; margin-bottom: 20px;">Generate stunning videos using OpenAI's Sora-2 model</p>
<p id="sub_title" style="font-size: 1em; margin-top: 20px; margin-bottom: 15px;">
<strong>Exclusive access for Hugging Face PRO users.</strong>
<a href="http://huggingface.co/subscribe/pro?source=sora2_video" target="_blank" style="color: #667eea;">Subscribe to PRO β†’</a>
</p>
<p style="font-size: 0.9em; color: #999; margin-top: 15px;">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #667eea;">anycoder</a>
</p>
</div>
""")
gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.HTML("""<div style="text-align: center; margin: 20px 0;">
<p style="color: #28a745; font-weight: bold;">✨ Welcome PRO User! You have full access to Sora-2.</p>
</div>""")
# Text -> Video
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Describe the video you want to create...",
lines=4
)
generate_btn = gr.Button("πŸŽ₯ Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Video", height=400, interactive=False, show_download_button=True)
status_output = gr.Textbox(label="Status", interactive=False, visible=True)
generate_btn.click(
fn=generate_with_pro_auth,
inputs=[prompt_input],
outputs=[video_output, status_output],
queue=False
)
# --- NEW: Image -> Video UI ---
gr.HTML("""
<div style="text-align: center; margin: 40px 0 10px;">
<h3 style="margin-bottom: 8px;">πŸ–ΌοΈ ➜ 🎬 Image β†’ Video (beta)</h3>
<p style="color:#666; margin:0;">Turn a single image into a short video with a guiding prompt.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
img_prompt_input = gr.Textbox(
label="Describe how the scene should evolve",
placeholder="e.g., The cat starts to dance and spins playfully",
lines=3,
)
image_input = gr.Image(label="Upload an image", type="filepath")
generate_img_btn = gr.Button("πŸŽ₯ Generate from Image", variant="primary")
with gr.Column(scale=1):
video_output_img = gr.Video(label="Generated Video (from Image)", height=400, interactive=False, show_download_button=True)
status_output_img = gr.Textbox(label="Status", interactive=False, visible=True)
generate_img_btn.click(
fn=generate_with_pro_auth_image,
inputs=[img_prompt_input, image_input],
outputs=[video_output_img, status_output_img],
queue=False
)
gr.HTML("""<div style="text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #e0e0e0;">
<h3 style="color: #667eea;">Thank you for being a PRO user! πŸ€—</h3>
</div>""")
def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = "## ✨ Exclusive Access for PRO Users\n\nThis tool is available exclusively for Hugging Face **PRO** members."
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
return demo
if __name__ == "__main__":
try:
cleanup_temp_files()
if os.path.exists("gradio_cached_examples"):
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
except Exception as e:
print(f"Initial cleanup error: {e}")
app = create_ui()
app.launch(show_api=False, enable_monitoring=False, quiet=True, max_threads=10)