Spaces:
Running
Running
Update Gradio app with multiple files
Browse files- app.py +22 -75
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import openai
|
| 3 |
import os
|
| 4 |
import json
|
| 5 |
import time
|
|
@@ -8,43 +7,15 @@ from typing import Optional, Tuple, Dict, Any
|
|
| 8 |
import tempfile
|
| 9 |
import base64
|
| 10 |
import re
|
|
|
|
| 11 |
|
| 12 |
-
# Initialize
|
| 13 |
-
client =
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
)
|
| 17 |
|
| 18 |
-
def format_sora_prompt(
|
| 19 |
-
prompt: str,
|
| 20 |
-
duration: int = 8,
|
| 21 |
-
size: str = "1280x720"
|
| 22 |
-
) -> str:
|
| 23 |
-
"""Format the prompt with Sora-2 specific parameters."""
|
| 24 |
-
formatted_prompt = f"{prompt}\n\n--duration {duration} --size {size}"
|
| 25 |
-
return formatted_prompt
|
| 26 |
-
|
| 27 |
-
def extract_video_url(content: str) -> Optional[str]:
|
| 28 |
-
"""Extract video URL from the response content."""
|
| 29 |
-
# Try to find direct video URL
|
| 30 |
-
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+\.(?:mp4|mov|avi|webm)'
|
| 31 |
-
urls = re.findall(url_pattern, content)
|
| 32 |
-
if urls:
|
| 33 |
-
return urls[0]
|
| 34 |
-
|
| 35 |
-
# Try to find any URL that might be a video
|
| 36 |
-
general_url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+'
|
| 37 |
-
urls = re.findall(general_url_pattern, content)
|
| 38 |
-
for url in urls:
|
| 39 |
-
if any(vid_keyword in url.lower() for vid_keyword in ['video', 'mp4', 'mov', 'media', 'cdn']):
|
| 40 |
-
return url
|
| 41 |
-
|
| 42 |
-
# Return first URL if found
|
| 43 |
-
if urls:
|
| 44 |
-
return urls[0]
|
| 45 |
-
|
| 46 |
-
return None
|
| 47 |
-
|
| 48 |
def generate_video(
|
| 49 |
prompt: str,
|
| 50 |
duration: int = 8,
|
|
@@ -52,59 +23,35 @@ def generate_video(
|
|
| 52 |
api_key: Optional[str] = None
|
| 53 |
) -> Tuple[Optional[str], str]:
|
| 54 |
"""
|
| 55 |
-
Generate video using Sora-2 through
|
| 56 |
Returns tuple of (video_path, status_message).
|
| 57 |
"""
|
| 58 |
try:
|
| 59 |
# Use provided API key or environment variable
|
| 60 |
if api_key:
|
| 61 |
-
temp_client =
|
|
|
|
| 62 |
api_key=api_key,
|
| 63 |
-
|
| 64 |
)
|
| 65 |
else:
|
| 66 |
temp_client = client
|
| 67 |
-
if not os.
|
| 68 |
-
return None, "β Please set
|
| 69 |
-
|
| 70 |
-
# Format prompt with parameters
|
| 71 |
-
formatted_prompt = format_sora_prompt(prompt, duration, size)
|
| 72 |
|
| 73 |
-
# Call Sora-2 through
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
)
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
if video_url:
|
| 86 |
-
# Download the video
|
| 87 |
-
try:
|
| 88 |
-
headers = {
|
| 89 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 90 |
-
}
|
| 91 |
-
video_response = requests.get(video_url, headers=headers, timeout=60)
|
| 92 |
-
video_response.raise_for_status()
|
| 93 |
-
|
| 94 |
-
# Save to temporary file
|
| 95 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
| 96 |
-
tmp_file.write(video_response.content)
|
| 97 |
-
video_path = tmp_file.name
|
| 98 |
-
|
| 99 |
-
status_message = f"β
Video generated successfully!"
|
| 100 |
-
return video_path, status_message
|
| 101 |
-
|
| 102 |
-
except requests.exceptions.RequestException as e:
|
| 103 |
-
return None, f"β Failed to download video: {str(e)}"
|
| 104 |
-
else:
|
| 105 |
-
# If no URL found, the response might contain the video data directly
|
| 106 |
-
# or might need different parsing
|
| 107 |
-
return None, f"β Could not extract video from response. Response: {content[:200]}..."
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
error_msg = f"β Error generating video: {str(e)}"
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import time
|
|
|
|
| 7 |
import tempfile
|
| 8 |
import base64
|
| 9 |
import re
|
| 10 |
+
from huggingface_hub import InferenceClient
|
| 11 |
|
| 12 |
+
# Initialize Hugging Face Inference Client with fal-ai provider
|
| 13 |
+
client = InferenceClient(
|
| 14 |
+
provider="fal-ai",
|
| 15 |
+
api_key=os.environ["HF_TOKEN"],
|
| 16 |
+
bill_to="huggingface",
|
| 17 |
)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def generate_video(
|
| 20 |
prompt: str,
|
| 21 |
duration: int = 8,
|
|
|
|
| 23 |
api_key: Optional[str] = None
|
| 24 |
) -> Tuple[Optional[str], str]:
|
| 25 |
"""
|
| 26 |
+
Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider.
|
| 27 |
Returns tuple of (video_path, status_message).
|
| 28 |
"""
|
| 29 |
try:
|
| 30 |
# Use provided API key or environment variable
|
| 31 |
if api_key:
|
| 32 |
+
temp_client = InferenceClient(
|
| 33 |
+
provider="fal-ai",
|
| 34 |
api_key=api_key,
|
| 35 |
+
bill_to="huggingface",
|
| 36 |
)
|
| 37 |
else:
|
| 38 |
temp_client = client
|
| 39 |
+
if not os.environ.get("HF_TOKEN") and not api_key:
|
| 40 |
+
return None, "β Please set HF_TOKEN environment variable."
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# Call Sora-2 through Hugging Face Inference API
|
| 43 |
+
video_bytes = temp_client.text_to_video(
|
| 44 |
+
prompt,
|
| 45 |
+
model="akhaliq/sora-2",
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Save to temporary file
|
| 49 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
| 50 |
+
tmp_file.write(video_bytes)
|
| 51 |
+
video_path = tmp_file.name
|
| 52 |
|
| 53 |
+
status_message = f"β
Video generated successfully!"
|
| 54 |
+
return video_path, status_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
except Exception as e:
|
| 57 |
error_msg = f"β Error generating video: {str(e)}"
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
gradio>=5.0.0
|
| 2 |
-
openai>=1.0.0
|
| 3 |
requests>=2.31.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
-
Pillow>=10.0.0
|
|
|
|
|
|
| 1 |
gradio>=5.0.0
|
|
|
|
| 2 |
requests>=2.31.0
|
| 3 |
numpy>=1.24.0
|
| 4 |
+
Pillow>=10.0.0
|
| 5 |
+
huggingface-hub>=0.20.0
|