Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,439 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
# Create the Gradio interface
|
| 4 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="AI Video Generator") as demo:
|
| 5 |
gr.Markdown(
|
| 6 |
"""
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# Launch the app
|
| 18 |
if __name__ == "__main__":
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
import tempfile
|
| 5 |
+
import shutil
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Optional, Union
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
# -------------------------
|
| 11 |
+
# Utilities
|
| 12 |
+
# -------------------------
|
| 13 |
+
|
| 14 |
+
def cleanup_temp_files():
|
| 15 |
+
try:
|
| 16 |
+
temp_dir = tempfile.gettempdir()
|
| 17 |
+
for file_path in Path(temp_dir).glob("*.mp4"):
|
| 18 |
+
try:
|
| 19 |
+
if file_path.stat().st_mtime < (time.time() - 300):
|
| 20 |
+
file_path.unlink(missing_ok=True)
|
| 21 |
+
except Exception:
|
| 22 |
+
pass
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Cleanup error: {e}")
|
| 25 |
+
|
| 26 |
+
def _client_from_token(token: Optional[str]) -> InferenceClient:
|
| 27 |
+
if not token:
|
| 28 |
+
raise gr.Error("Please sign in first. This app requires your Hugging Face login.")
|
| 29 |
+
# IMPORTANT: do not set bill_to when using user OAuth tokens
|
| 30 |
+
return InferenceClient(
|
| 31 |
+
provider="fal-ai",
|
| 32 |
+
api_key=token,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def _save_bytes_as_temp_mp4(data: bytes) -> str:
|
| 36 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 37 |
+
try:
|
| 38 |
+
temp_file.write(data)
|
| 39 |
+
temp_file.flush()
|
| 40 |
+
return temp_file.name
|
| 41 |
+
finally:
|
| 42 |
+
temp_file.close()
|
| 43 |
+
|
| 44 |
+
def text_to_video(prompt, token: gr.OAuthToken | None, duration=5, aspect_ratio="16:9", resolution="720p", *_):
|
| 45 |
+
"""Generate video from text prompt"""
|
| 46 |
+
try:
|
| 47 |
+
if token is None or not getattr(token, "token", None):
|
| 48 |
+
return None, "β Sign in with Hugging Face to continue. This app uses your inference provider credits."
|
| 49 |
+
|
| 50 |
+
if not prompt or prompt.strip() == "":
|
| 51 |
+
return None, "Please enter a text prompt"
|
| 52 |
+
|
| 53 |
+
cleanup_temp_files()
|
| 54 |
+
|
| 55 |
+
# Create client with user's token
|
| 56 |
+
client = _client_from_token(token.token)
|
| 57 |
+
|
| 58 |
+
# Generate video from text
|
| 59 |
+
try:
|
| 60 |
+
video = client.text_to_video(
|
| 61 |
+
prompt,
|
| 62 |
+
model="akhaliq/veo3.1-fast",
|
| 63 |
+
)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
import requests
|
| 66 |
+
if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
|
| 67 |
+
return None, "β Access denied by provider (403). Make sure your HF account has credits/permission for provider 'fal-ai' and model 'akhaliq/veo3.1-fast'."
|
| 68 |
+
raise
|
| 69 |
+
|
| 70 |
+
# Save the video to a temporary file
|
| 71 |
+
video_path = _save_bytes_as_temp_mp4(video)
|
| 72 |
+
|
| 73 |
+
return video_path, f"β
Video generated successfully from prompt: '{prompt[:50]}...'"
|
| 74 |
+
|
| 75 |
+
except gr.Error as e:
|
| 76 |
+
return None, f"β {str(e)}"
|
| 77 |
+
except Exception as e:
|
| 78 |
+
return None, f"β Generation failed. If this keeps happening, check your provider quota or try again later."
|
| 79 |
+
|
| 80 |
+
def image_to_video(image, prompt, token: gr.OAuthToken | None, duration=5, aspect_ratio="16:9", resolution="720p", *_):
|
| 81 |
+
"""Generate video from image and prompt"""
|
| 82 |
+
try:
|
| 83 |
+
if token is None or not getattr(token, "token", None):
|
| 84 |
+
return None, "β Sign in with Hugging Face to continue. This app uses your inference provider credits."
|
| 85 |
+
|
| 86 |
+
if image is None:
|
| 87 |
+
return None, "Please upload an image"
|
| 88 |
+
|
| 89 |
+
if not prompt or prompt.strip() == "":
|
| 90 |
+
return None, "Please enter a prompt describing the motion"
|
| 91 |
+
|
| 92 |
+
cleanup_temp_files()
|
| 93 |
+
|
| 94 |
+
# Read the image file
|
| 95 |
+
if isinstance(image, str):
|
| 96 |
+
# If image is a file path
|
| 97 |
+
with open(image, "rb") as image_file:
|
| 98 |
+
input_image = image_file.read()
|
| 99 |
+
else:
|
| 100 |
+
# If image is already bytes or similar
|
| 101 |
+
import io
|
| 102 |
+
from PIL import Image as PILImage
|
| 103 |
+
|
| 104 |
+
# Convert to bytes if necessary
|
| 105 |
+
if isinstance(image, PILImage.Image):
|
| 106 |
+
buffer = io.BytesIO()
|
| 107 |
+
image.save(buffer, format='PNG')
|
| 108 |
+
input_image = buffer.getvalue()
|
| 109 |
+
else:
|
| 110 |
+
# Assume it's a numpy array or similar
|
| 111 |
+
pil_image = PILImage.fromarray(image)
|
| 112 |
+
buffer = io.BytesIO()
|
| 113 |
+
pil_image.save(buffer, format='PNG')
|
| 114 |
+
input_image = buffer.getvalue()
|
| 115 |
+
|
| 116 |
+
# Create client with user's token
|
| 117 |
+
client = _client_from_token(token.token)
|
| 118 |
+
|
| 119 |
+
# Generate video from image
|
| 120 |
+
try:
|
| 121 |
+
video = client.image_to_video(
|
| 122 |
+
input_image,
|
| 123 |
+
prompt=prompt,
|
| 124 |
+
model="akhaliq/veo3.1-fast-image-to-video",
|
| 125 |
+
)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
import requests
|
| 128 |
+
if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
|
| 129 |
+
return None, "β Access denied by provider (403). Make sure your HF account has credits/permission for provider 'fal-ai' and model 'akhaliq/veo3.1-fast-image-to-video'."
|
| 130 |
+
raise
|
| 131 |
+
|
| 132 |
+
# Save the video to a temporary file
|
| 133 |
+
video_path = _save_bytes_as_temp_mp4(video)
|
| 134 |
+
|
| 135 |
+
return video_path, f"β
Video generated successfully with motion: '{prompt[:50]}...'"
|
| 136 |
+
|
| 137 |
+
except gr.Error as e:
|
| 138 |
+
return None, f"β {str(e)}"
|
| 139 |
+
except Exception as e:
|
| 140 |
+
return None, f"β Generation failed. If this keeps happening, check your provider quota or try again later."
|
| 141 |
+
|
| 142 |
+
def clear_text_tab():
|
| 143 |
+
"""Clear text-to-video tab"""
|
| 144 |
+
return "", None, ""
|
| 145 |
+
|
| 146 |
+
def clear_image_tab():
|
| 147 |
+
"""Clear image-to-video tab"""
|
| 148 |
+
return None, "", None, ""
|
| 149 |
+
|
| 150 |
+
# Custom CSS for better styling
|
| 151 |
+
custom_css = """
|
| 152 |
+
.container {
|
| 153 |
+
max-width: 1200px;
|
| 154 |
+
margin: auto;
|
| 155 |
+
}
|
| 156 |
+
.header-link {
|
| 157 |
+
text-decoration: none;
|
| 158 |
+
color: #2196F3;
|
| 159 |
+
font-weight: bold;
|
| 160 |
+
}
|
| 161 |
+
.header-link:hover {
|
| 162 |
+
text-decoration: underline;
|
| 163 |
+
}
|
| 164 |
+
.status-box {
|
| 165 |
+
padding: 10px;
|
| 166 |
+
border-radius: 5px;
|
| 167 |
+
margin-top: 10px;
|
| 168 |
+
}
|
| 169 |
+
.notice {
|
| 170 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 171 |
+
color: white;
|
| 172 |
+
padding: 14px 16px;
|
| 173 |
+
border-radius: 12px;
|
| 174 |
+
margin: 18px auto 6px;
|
| 175 |
+
max-width: 860px;
|
| 176 |
+
text-align: center;
|
| 177 |
+
font-size: 0.98rem;
|
| 178 |
+
}
|
| 179 |
+
.mobile-link-container {
|
| 180 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 181 |
+
padding: 1.5em;
|
| 182 |
+
border-radius: 10px;
|
| 183 |
+
text-align: center;
|
| 184 |
+
margin: 1em 0;
|
| 185 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 186 |
+
}
|
| 187 |
+
.mobile-link {
|
| 188 |
+
color: white !important;
|
| 189 |
+
font-size: 1.2em;
|
| 190 |
+
font-weight: bold;
|
| 191 |
+
text-decoration: none;
|
| 192 |
+
display: inline-block;
|
| 193 |
+
padding: 0.5em 1.5em;
|
| 194 |
+
background: rgba(255, 255, 255, 0.2);
|
| 195 |
+
border-radius: 25px;
|
| 196 |
+
transition: all 0.3s ease;
|
| 197 |
+
}
|
| 198 |
+
.mobile-link:hover {
|
| 199 |
+
background: rgba(255, 255, 255, 0.3);
|
| 200 |
+
transform: translateY(-2px);
|
| 201 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
| 202 |
+
}
|
| 203 |
+
.mobile-text {
|
| 204 |
+
color: white;
|
| 205 |
+
margin-bottom: 0.5em;
|
| 206 |
+
font-size: 1.1em;
|
| 207 |
+
}
|
| 208 |
+
"""
|
| 209 |
|
| 210 |
# Create the Gradio interface
|
| 211 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator (Paid)") as demo:
|
| 212 |
gr.Markdown(
|
| 213 |
"""
|
| 214 |
+
# π¬ AI Video Generator
|
| 215 |
+
### Generate stunning videos from text or animate your images with AI
|
| 216 |
+
#### Powered by VEO 3.1 Fast Model via Hugging Face Inference API (provider: fal-ai)
|
| 217 |
+
"""
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
gr.HTML(
|
| 221 |
+
"""
|
| 222 |
+
<div style="text-align:center; max-width:900px; margin:0 auto;">
|
| 223 |
+
<h1 style="font-size:2.2em; margin-bottom:6px;">π¬ Sora-2</h1>
|
| 224 |
+
<p style="color:#777; margin:0 0 8px;">Generate videos via the Hugging Face Inference API (provider: fal-ai)</p>
|
| 225 |
+
<div class="notice">
|
| 226 |
+
<b>Heads up:</b> This is a paid app that uses <b>your</b> inference provider credits when you run generations.
|
| 227 |
+
Free users get <b>$0.10 in included credits</b>. <b>PRO users</b> get <b>$2 in included credits</b>
|
| 228 |
+
and can continue using beyond that (with billing).
|
| 229 |
+
<a href='http://huggingface.co/subscribe/pro?source=veo3' target='_blank' style='color:#fff; text-decoration:underline; font-weight:bold;'>Subscribe to PRO</a>
|
| 230 |
+
for more credits. Please sign in with your Hugging Face account to continue.
|
| 231 |
+
</div>
|
| 232 |
+
<p style="font-size: 0.9em; color: #999; margin-top: 10px;">
|
| 233 |
+
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color:#fff; text-decoration:underline;">anycoder</a>
|
| 234 |
+
</p>
|
| 235 |
+
</div>
|
| 236 |
+
"""
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Add mobile link section
|
| 240 |
+
gr.HTML(
|
| 241 |
+
"""
|
| 242 |
+
<div class="mobile-link-container">
|
| 243 |
+
<div class="mobile-text">π± On mobile? Use the optimized version:</div>
|
| 244 |
+
<a href="https://akhaliq-veo3-1-fast.hf.space" target="_blank" class="mobile-link">
|
| 245 |
+
π Open Mobile Version
|
| 246 |
+
</a>
|
| 247 |
+
</div>
|
| 248 |
+
"""
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
gr.HTML(
|
| 252 |
+
"""
|
| 253 |
+
<p style="text-align: center; font-size: 0.9em; color: #999; margin-top: 10px;">
|
| 254 |
+
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color:#667eea; text-decoration:underline;">anycoder</a>
|
| 255 |
+
</p>
|
| 256 |
+
"""
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
# Add login button - required for OAuth
|
| 260 |
+
login_btn = gr.LoginButton("Sign in with Hugging Face")
|
| 261 |
+
|
| 262 |
+
with gr.Tabs() as tabs:
|
| 263 |
+
# Text-to-Video Tab
|
| 264 |
+
with gr.Tab("π Text to Video", id=0):
|
| 265 |
+
gr.Markdown("### Transform your text descriptions into dynamic videos")
|
| 266 |
+
|
| 267 |
+
with gr.Row():
|
| 268 |
+
with gr.Column(scale=1):
|
| 269 |
+
text_prompt = gr.Textbox(
|
| 270 |
+
label="Text Prompt",
|
| 271 |
+
placeholder="Describe the video you want to create... (e.g., 'A young man walking on the street during sunset')",
|
| 272 |
+
lines=4,
|
| 273 |
+
max_lines=6
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
with gr.Row():
|
| 277 |
+
text_generate_btn = gr.Button("π¬ Generate Video", variant="primary", scale=2)
|
| 278 |
+
text_clear_btn = gr.ClearButton(value="ποΈ Clear", scale=1)
|
| 279 |
+
|
| 280 |
+
text_status = gr.Textbox(
|
| 281 |
+
label="Status",
|
| 282 |
+
interactive=False,
|
| 283 |
+
visible=True,
|
| 284 |
+
elem_classes=["status-box"]
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with gr.Column(scale=1):
|
| 288 |
+
text_video_output = gr.Video(
|
| 289 |
+
label="Generated Video",
|
| 290 |
+
autoplay=True,
|
| 291 |
+
show_download_button=True,
|
| 292 |
+
height=400
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Examples for text-to-video
|
| 296 |
+
gr.Examples(
|
| 297 |
+
examples=[
|
| 298 |
+
["A serene beach at sunset with gentle waves"],
|
| 299 |
+
["A bustling city street with neon lights at night"],
|
| 300 |
+
["A majestic eagle soaring through mountain peaks"],
|
| 301 |
+
["An astronaut floating in space near the International Space Station"],
|
| 302 |
+
["Cherry blossoms falling in slow motion in a Japanese garden"],
|
| 303 |
+
],
|
| 304 |
+
inputs=text_prompt,
|
| 305 |
+
label="Example Prompts"
|
| 306 |
+
)
|
| 307 |
|
| 308 |
+
# Image-to-Video Tab
|
| 309 |
+
with gr.Tab("πΌοΈ Image to Video", id=1):
|
| 310 |
+
gr.Markdown("### Bring your static images to life with motion")
|
| 311 |
+
|
| 312 |
+
with gr.Row():
|
| 313 |
+
with gr.Column(scale=1):
|
| 314 |
+
image_input = gr.Image(
|
| 315 |
+
label="Upload Image",
|
| 316 |
+
type="pil",
|
| 317 |
+
height=300
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
image_prompt = gr.Textbox(
|
| 321 |
+
label="Motion Prompt",
|
| 322 |
+
placeholder="Describe how the image should move... (e.g., 'The cat starts to dance')",
|
| 323 |
+
lines=3,
|
| 324 |
+
max_lines=5
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
with gr.Row():
|
| 328 |
+
image_generate_btn = gr.Button("π¬ Animate Image", variant="primary", scale=2)
|
| 329 |
+
image_clear_btn = gr.ClearButton(value="ποΈ Clear", scale=1)
|
| 330 |
+
|
| 331 |
+
image_status = gr.Textbox(
|
| 332 |
+
label="Status",
|
| 333 |
+
interactive=False,
|
| 334 |
+
visible=True,
|
| 335 |
+
elem_classes=["status-box"]
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
with gr.Column(scale=1):
|
| 339 |
+
image_video_output = gr.Video(
|
| 340 |
+
label="Generated Video",
|
| 341 |
+
autoplay=True,
|
| 342 |
+
show_download_button=True,
|
| 343 |
+
height=400
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# Examples for image-to-video
|
| 347 |
+
gr.Examples(
|
| 348 |
+
examples=[
|
| 349 |
+
[None, "The person starts walking forward"],
|
| 350 |
+
[None, "The animal begins to run"],
|
| 351 |
+
[None, "Camera slowly zooms in while the subject smiles"],
|
| 352 |
+
[None, "The flowers sway gently in the breeze"],
|
| 353 |
+
[None, "The clouds move across the sky in time-lapse"],
|
| 354 |
+
],
|
| 355 |
+
inputs=[image_input, image_prompt],
|
| 356 |
+
label="Example Motion Prompts"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# How to Use section
|
| 360 |
+
with gr.Accordion("π How to Use", open=False):
|
| 361 |
+
gr.Markdown(
|
| 362 |
+
"""
|
| 363 |
+
### Text to Video:
|
| 364 |
+
1. Enter a detailed description of the video you want to create
|
| 365 |
+
2. Optionally adjust advanced settings (duration, aspect ratio, resolution)
|
| 366 |
+
3. Click "Generate Video" and wait for the AI to create your video
|
| 367 |
+
4. Download or preview your generated video
|
| 368 |
+
|
| 369 |
+
### Image to Video:
|
| 370 |
+
1. Upload an image you want to animate
|
| 371 |
+
2. Describe the motion or action you want to add to the image
|
| 372 |
+
3. Optionally adjust advanced settings
|
| 373 |
+
4. Click "Animate Image" to bring your image to life
|
| 374 |
+
5. Download or preview your animated video
|
| 375 |
+
|
| 376 |
+
### Tips for Better Results:
|
| 377 |
+
- Be specific and descriptive in your prompts
|
| 378 |
+
- For image-to-video, describe natural motions that fit the image
|
| 379 |
+
- Use high-quality input images for better results
|
| 380 |
+
- Experiment with different prompts to get the desired effect
|
| 381 |
+
|
| 382 |
+
### Mobile Users:
|
| 383 |
+
- For the best mobile experience, use the optimized version at: https://akhaliq-veo3-1-fast.hf.space
|
| 384 |
+
"""
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
# Event handlers
|
| 388 |
+
text_generate_btn.click(
|
| 389 |
+
fn=text_to_video,
|
| 390 |
+
inputs=[text_prompt, login_btn],
|
| 391 |
+
outputs=[text_video_output, text_status],
|
| 392 |
+
show_progress="full",
|
| 393 |
+
queue=False,
|
| 394 |
+
api_name=False,
|
| 395 |
+
show_api=False
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
text_clear_btn.click(
|
| 399 |
+
fn=clear_text_tab,
|
| 400 |
+
inputs=[],
|
| 401 |
+
outputs=[text_prompt, text_video_output, text_status],
|
| 402 |
+
queue=False
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
image_generate_btn.click(
|
| 406 |
+
fn=image_to_video,
|
| 407 |
+
inputs=[image_input, image_prompt, login_btn],
|
| 408 |
+
outputs=[image_video_output, image_status],
|
| 409 |
+
show_progress="full",
|
| 410 |
+
queue=False,
|
| 411 |
+
api_name=False,
|
| 412 |
+
show_api=False
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
image_clear_btn.click(
|
| 416 |
+
fn=clear_image_tab,
|
| 417 |
+
inputs=[],
|
| 418 |
+
outputs=[image_input, image_prompt, image_video_output, image_status],
|
| 419 |
+
queue=False
|
| 420 |
)
|
| 421 |
|
| 422 |
# Launch the app
|
| 423 |
if __name__ == "__main__":
|
| 424 |
+
try:
|
| 425 |
+
cleanup_temp_files()
|
| 426 |
+
if os.path.exists("gradio_cached_examples"):
|
| 427 |
+
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
|
| 428 |
+
except Exception as e:
|
| 429 |
+
print(f"Initial cleanup error: {e}")
|
| 430 |
+
|
| 431 |
+
demo.queue(status_update_rate="auto", api_open=False, default_concurrency_limit=None)
|
| 432 |
+
demo.launch(
|
| 433 |
+
show_api=False,
|
| 434 |
+
share=False,
|
| 435 |
+
show_error=True,
|
| 436 |
+
enable_monitoring=False,
|
| 437 |
+
quiet=True,
|
| 438 |
+
ssr_mode=True
|
| 439 |
+
)
|