import gradio as gr import os from huggingface_hub import InferenceClient import tempfile import shutil from pathlib import Path # Initialize the client client = InferenceClient( provider="fal-ai", api_key=os.environ.get("HF_TOKEN"), bill_to="huggingface", ) def text_to_video(prompt, duration=5, aspect_ratio="16:9", resolution="720p", profile: gr.OAuthProfile | None = None): """Generate video from text prompt""" try: if profile is None: return None, "❌ Click Sign in with Hugging Face button to use this app for free" if not prompt or prompt.strip() == "": return None, "Please enter a text prompt" # Generate video from text video = client.text_to_video( prompt, model="akhaliq/veo3.1-fast", ) # Save the video to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file: tmp_file.write(video) video_path = tmp_file.name return video_path, f"✅ Video generated successfully from prompt: '{prompt[:50]}...'" except Exception as e: return None, f"❌ Error generating video: {str(e)}" def image_to_video(image, prompt, duration=5, aspect_ratio="16:9", resolution="720p", profile: gr.OAuthProfile | None = None): """Generate video from image and prompt""" try: if profile is None: return None, "❌ Click Sign in with Hugging Face button to use this app for free" if image is None: return None, "Please upload an image" if not prompt or prompt.strip() == "": return None, "Please enter a prompt describing the motion" # Read the image file if isinstance(image, str): # If image is a file path with open(image, "rb") as image_file: input_image = image_file.read() else: # If image is already bytes or similar import io from PIL import Image as PILImage # Convert to bytes if necessary if isinstance(image, PILImage.Image): buffer = io.BytesIO() image.save(buffer, format='PNG') input_image = buffer.getvalue() else: # Assume it's a numpy array or similar pil_image = PILImage.fromarray(image) buffer = io.BytesIO() pil_image.save(buffer, format='PNG') input_image = buffer.getvalue() # Generate video from image video = client.image_to_video( input_image, prompt=prompt, model="akhaliq/veo3.1-fast-image-to-video", ) # Save the video to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file: tmp_file.write(video) video_path = tmp_file.name return video_path, f"✅ Video generated successfully with motion: '{prompt[:50]}...'" except Exception as e: return None, f"❌ Error generating video: {str(e)}" def clear_text_tab(): """Clear text-to-video tab""" return "", None, "" def clear_image_tab(): """Clear image-to-video tab""" return None, "", None, "" # Custom CSS for better styling custom_css = """ .container { max-width: 1200px; margin: auto; } .header-link { text-decoration: none; color: #2196F3; font-weight: bold; } .header-link:hover { text-decoration: underline; } .status-box { padding: 10px; border-radius: 5px; margin-top: 10px; } .auth-warning { color: #ff6b00; font-weight: bold; text-align: center; margin: 1em 0; padding: 1em; background-color: #fff3e0; border-radius: 5px; } .mobile-link-container { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1.5em; border-radius: 10px; text-align: center; margin: 1em 0; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .mobile-link { color: white !important; font-size: 1.2em; font-weight: bold; text-decoration: none; display: inline-block; padding: 0.5em 1.5em; background: rgba(255, 255, 255, 0.2); border-radius: 25px; transition: all 0.3s ease; } .mobile-link:hover { background: rgba(255, 255, 255, 0.3); transform: translateY(-2px); box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); } .mobile-text { color: white; margin-bottom: 0.5em; font-size: 1.1em; } """ # Create the Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator") as demo: gr.Markdown( """ # 🎬 AI Video Generator ### Generate stunning videos from text or animate your images with AI #### Powered by VEO 3.1 Fast Model | [Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder) """ ) # Add mobile link section gr.HTML( """ """ ) gr.HTML( """
⚠️ You must Sign in with Hugging Face using the button below to use this app.
""" ) # Add login button - required for OAuth gr.LoginButton() with gr.Tabs() as tabs: # Text-to-Video Tab with gr.Tab("📝 Text to Video", id=0): gr.Markdown("### Transform your text descriptions into dynamic videos") with gr.Row(): with gr.Column(scale=1): text_prompt = gr.Textbox( label="Text Prompt", placeholder="Describe the video you want to create... (e.g., 'A young man walking on the street during sunset')", lines=4, max_lines=6 ) with gr.Row(): text_generate_btn = gr.Button("🎬 Generate Video", variant="primary", scale=2) text_clear_btn = gr.ClearButton(value="🗑️ Clear", scale=1) text_status = gr.Textbox( label="Status", interactive=False, visible=True, elem_classes=["status-box"] ) with gr.Column(scale=1): text_video_output = gr.Video( label="Generated Video", autoplay=True, show_download_button=True, height=400 ) # Examples for text-to-video gr.Examples( examples=[ ["A serene beach at sunset with gentle waves"], ["A bustling city street with neon lights at night"], ["A majestic eagle soaring through mountain peaks"], ["An astronaut floating in space near the International Space Station"], ["Cherry blossoms falling in slow motion in a Japanese garden"], ], inputs=text_prompt, label="Example Prompts" ) # Image-to-Video Tab with gr.Tab("🖼️ Image to Video", id=1): gr.Markdown("### Bring your static images to life with motion") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image( label="Upload Image", type="pil", height=300 ) image_prompt = gr.Textbox( label="Motion Prompt", placeholder="Describe how the image should move... (e.g., 'The cat starts to dance')", lines=3, max_lines=5 ) with gr.Row(): image_generate_btn = gr.Button("🎬 Animate Image", variant="primary", scale=2) image_clear_btn = gr.ClearButton(value="🗑️ Clear", scale=1) image_status = gr.Textbox( label="Status", interactive=False, visible=True, elem_classes=["status-box"] ) with gr.Column(scale=1): image_video_output = gr.Video( label="Generated Video", autoplay=True, show_download_button=True, height=400 ) # Examples for image-to-video gr.Examples( examples=[ [None, "The person starts walking forward"], [None, "The animal begins to run"], [None, "Camera slowly zooms in while the subject smiles"], [None, "The flowers sway gently in the breeze"], [None, "The clouds move across the sky in time-lapse"], ], inputs=[image_input, image_prompt], label="Example Motion Prompts" ) # How to Use section with gr.Accordion("📖 How to Use", open=False): gr.Markdown( """ ### Text to Video: 1. Enter a detailed description of the video you want to create 2. Optionally adjust advanced settings (duration, aspect ratio, resolution) 3. Click "Generate Video" and wait for the AI to create your video 4. Download or preview your generated video ### Image to Video: 1. Upload an image you want to animate 2. Describe the motion or action you want to add to the image 3. Optionally adjust advanced settings 4. Click "Animate Image" to bring your image to life 5. Download or preview your animated video ### Tips for Better Results: - Be specific and descriptive in your prompts - For image-to-video, describe natural motions that fit the image - Use high-quality input images for better results - Experiment with different prompts to get the desired effect ### Mobile Users: - For the best mobile experience, use the optimized version at: https://akhaliq-veo3-1-fast.hf.space """ ) # Event handlers text_generate_btn.click( fn=text_to_video, inputs=[text_prompt], outputs=[text_video_output, text_status], show_progress="full", queue=False, api_name=False, show_api=False ) text_clear_btn.click( fn=clear_text_tab, inputs=[], outputs=[text_prompt, text_video_output, text_status], queue=False ) image_generate_btn.click( fn=image_to_video, inputs=[image_input, image_prompt], outputs=[image_video_output, image_status], show_progress="full", queue=False, api_name=False, show_api=False ) image_clear_btn.click( fn=clear_image_tab, inputs=[], outputs=[image_input, image_prompt, image_video_output, image_status], queue=False ) # Launch the app if __name__ == "__main__": demo.launch( show_api=False, share=False, show_error=True, enable_monitoring=False, quiet=True, ssr_mode=True )