Spaces:
Build error
Build error
| import torch | |
| import torchvision | |
| from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights | |
| from torch import nn | |
| from PIL import Image | |
| from model import create_effnet_v2_model | |
| import gradio as gr | |
| import os | |
| from timeit import default_timer as timer | |
| class_names = ['Honda', 'Hyundai', 'Toyota'] | |
| effnet_v2, transforms = create_effnet_v2_model(num_classes=len(class_names), weights_path="efficient_net_s_carvision_3.pth") | |
| def predict(image): | |
| start_time = timer() | |
| # image = Image.open(image_path) | |
| image = transforms(image).unsqueeze(0) | |
| # image = image.to(device) | |
| output = effnet_v2(image) | |
| effnet_v2.eval() | |
| with torch.inference_mode(): | |
| probs = torch.softmax(output, dim=1) | |
| pred_labels_and_probs = {class_names[i]: float(probs[0, i]) for i in range(len(class_names))} | |
| pred_time = round(timer() - start_time, 5) | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create title, description and article strings | |
| title = "CarVision 🚗🚘🚙🏎️" | |
| description = "An EfficientNetv2 model to classify cars as Honda, Hyundai or Toyota" | |
| article = "Created by Akshay Ballal" | |
| # Create examples list from "examples/" directory | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, # mapping function from input to output | |
| inputs=gr.Image(type="pil"), # what are the inputs? | |
| outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
| gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
| # Create examples list from "examples/" directory | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo! | |
| demo.launch() |