| """GPT Blocks used for the GPT Model.""" | |
| from typing import Dict, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from .attention import ATTN_CLASS_REGISTRY | |
| from .norm import NORM_CLASS_REGISTRY | |
| class MPTMLP(nn.Module): | |
| def __init__( | |
| self, d_model: int, expansion_ratio: int, device: Optional[str] = None | |
| ): | |
| super().__init__() | |
| self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device) | |
| self.act = nn.GELU(approximate="none") | |
| self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device) | |
| self.down_proj._is_residual = True | |
| def forward(self, x): | |
| return self.down_proj(self.act(self.up_proj(x))) | |
| class MPTBlock(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| n_heads: int, | |
| expansion_ratio: int, | |
| attn_config: Dict = { | |
| "attn_type": "multihead_attention", | |
| "attn_pdrop": 0.0, | |
| "attn_impl": "triton", | |
| "qk_ln": False, | |
| "clip_qkv": None, | |
| "softmax_scale": None, | |
| "prefix_lm": False, | |
| "attn_uses_sequence_id": False, | |
| "alibi": False, | |
| "alibi_bias_max": 8, | |
| }, | |
| resid_pdrop: float = 0.0, | |
| norm_type: str = "low_precision_layernorm", | |
| verbose: int = 0, | |
| device: Optional[str] = None, | |
| **kwargs | |
| ): | |
| del kwargs | |
| super().__init__() | |
| norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] | |
| attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]] | |
| self.norm_1 = norm_class(d_model, device=device) | |
| self.attn = attn_class( | |
| attn_impl=attn_config["attn_impl"], | |
| clip_qkv=attn_config["clip_qkv"], | |
| qk_ln=attn_config["qk_ln"], | |
| softmax_scale=attn_config["softmax_scale"], | |
| attn_pdrop=attn_config["attn_pdrop"], | |
| d_model=d_model, | |
| n_heads=n_heads, | |
| verbose=verbose, | |
| device=device, | |
| ) | |
| self.norm_2 = norm_class(d_model, device=device) | |
| self.ffn = MPTMLP( | |
| d_model=d_model, expansion_ratio=expansion_ratio, device=device | |
| ) | |
| self.resid_attn_dropout = nn.Dropout(resid_pdrop) | |
| self.resid_ffn_dropout = nn.Dropout(resid_pdrop) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attn_bias: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.ByteTensor] = None, | |
| is_causal: bool = True, | |
| ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: | |
| a = self.norm_1(x) | |
| (b, attn_weights, past_key_value) = self.attn( | |
| a, | |
| past_key_value=past_key_value, | |
| attn_bias=attn_bias, | |
| attention_mask=attention_mask, | |
| is_causal=is_causal, | |
| ) | |
| x = x + self.resid_attn_dropout(b) | |
| m = self.norm_2(x) | |
| n = self.ffn(m) | |
| x = x + self.resid_ffn_dropout(n) | |
| return (x, attn_weights, past_key_value) | |