Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,31 +22,33 @@ import numpy as np
|
|
| 22 |
# Configuration Section (Modify here to expand)
|
| 23 |
# ======================
|
| 24 |
|
| 25 |
-
# 1. Base Model -
|
| 26 |
BASE_MODELS = {
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
}
|
| 32 |
|
| 33 |
-
# Current model selection
|
| 34 |
CURRENT_MODEL_KEY = "sdxl_base"
|
| 35 |
BASE_MODEL = BASE_MODELS[CURRENT_MODEL_KEY]
|
| 36 |
|
| 37 |
-
# 2. Fixed LoRAs (Auto-loaded, not user-selectable) - Using
|
| 38 |
FIXED_LORAS = {
|
| 39 |
"quality_enhancer": {
|
| 40 |
-
"repo_id": "
|
| 41 |
-
"
|
| 42 |
"weight": 0.6,
|
| 43 |
-
"trigger_words": "high quality, detailed, masterpiece"
|
|
|
|
| 44 |
},
|
| 45 |
-
"
|
| 46 |
"repo_id": "latent-consistency/lcm-lora-sdxl",
|
| 47 |
-
"
|
| 48 |
-
"weight": 0.
|
| 49 |
-
"trigger_words": "
|
|
|
|
| 50 |
}
|
| 51 |
}
|
| 52 |
|
|
@@ -59,7 +61,7 @@ STYLE_PROMPTS = {
|
|
| 59 |
"Watercolor": "watercolor painting, soft brush strokes, translucent layers, artistic, painterly, paper texture, traditional art, masterpiece, ",
|
| 60 |
}
|
| 61 |
|
| 62 |
-
# 4. Optional LoRAs (User-selectable
|
| 63 |
OPTIONAL_LORAS = {
|
| 64 |
"None": {
|
| 65 |
"repo_id": None,
|
|
@@ -67,35 +69,35 @@ OPTIONAL_LORAS = {
|
|
| 67 |
"trigger_words": "",
|
| 68 |
"description": "No additional LoRA"
|
| 69 |
},
|
| 70 |
-
"
|
| 71 |
-
"repo_id": "ByteDance/SDXL-Lightning",
|
| 72 |
-
"weight": 0.8,
|
| 73 |
-
"trigger_words": "high quality, detailed, fast generation",
|
| 74 |
-
"description": "Fast generation with quality enhancement"
|
| 75 |
-
},
|
| 76 |
-
"LCM LoRA": {
|
| 77 |
"repo_id": "latent-consistency/lcm-lora-sdxl",
|
| 78 |
-
"weight": 0.
|
| 79 |
-
"trigger_words": "lcm, high quality
|
| 80 |
-
"description": "
|
| 81 |
},
|
| 82 |
-
"
|
| 83 |
-
"repo_id": "
|
| 84 |
"weight": 0.7,
|
| 85 |
-
"trigger_words": "
|
| 86 |
-
"description": "Enhanced
|
| 87 |
},
|
| 88 |
-
"
|
| 89 |
-
"repo_id": "Linaqruf/anime-detailer-xl-lora",
|
| 90 |
"weight": 0.8,
|
| 91 |
-
"trigger_words": "anime style, detailed anime
|
| 92 |
-
"description": "Anime and manga style
|
| 93 |
},
|
| 94 |
-
"
|
| 95 |
-
"repo_id": "
|
| 96 |
"weight": 0.9,
|
| 97 |
-
"trigger_words": "
|
| 98 |
-
"description": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
}
|
| 100 |
}
|
| 101 |
|
|
@@ -123,24 +125,50 @@ current_loras = {}
|
|
| 123 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 124 |
|
| 125 |
def load_pipeline():
|
| 126 |
-
"""Load the base Illustrious XL pipeline"""
|
| 127 |
global pipe
|
| 128 |
if pipe is None:
|
| 129 |
-
print("π Loading
|
| 130 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 131 |
-
BASE_MODEL,
|
| 132 |
-
torch_dtype=torch.float16,
|
| 133 |
-
use_safetensors=True,
|
| 134 |
-
variant="fp16"
|
| 135 |
-
).to(device)
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
pipe.enable_model_cpu_offload()
|
| 141 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return pipe
|
| 145 |
|
| 146 |
def unload_pipeline():
|
|
@@ -159,7 +187,7 @@ def unload_pipeline():
|
|
| 159 |
print("ποΈ Pipeline unloaded.")
|
| 160 |
|
| 161 |
def load_lora_weights(lora_configs: List[Dict]):
|
| 162 |
-
"""Load multiple LoRA weights efficiently"""
|
| 163 |
global pipe, current_loras
|
| 164 |
|
| 165 |
if not lora_configs:
|
|
@@ -174,33 +202,46 @@ def load_lora_weights(lora_configs: List[Dict]):
|
|
| 174 |
except:
|
| 175 |
pass
|
| 176 |
|
| 177 |
-
# Load new LoRAs
|
| 178 |
adapter_names = []
|
| 179 |
adapter_weights = []
|
| 180 |
|
| 181 |
for config in lora_configs:
|
| 182 |
if config['repo_id'] and config['repo_id'] not in current_loras:
|
| 183 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
pipe.load_lora_weights(
|
| 185 |
config['repo_id'],
|
| 186 |
-
adapter_name=
|
| 187 |
)
|
| 188 |
-
current_loras[config['repo_id']] =
|
| 189 |
print(f"β
Loaded LoRA: {config['name']}")
|
|
|
|
| 190 |
except Exception as e:
|
| 191 |
-
print(f"
|
|
|
|
| 192 |
continue
|
| 193 |
|
| 194 |
-
if
|
| 195 |
-
|
|
|
|
| 196 |
adapter_weights.append(config['weight'])
|
| 197 |
|
| 198 |
-
# Set adapter weights
|
| 199 |
if adapter_names:
|
| 200 |
try:
|
| 201 |
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
|
|
|
|
| 202 |
except Exception as e:
|
| 203 |
print(f"β οΈ Warning setting adapter weights: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
def process_long_prompt(prompt: str, max_length: int = 77) -> str:
|
| 206 |
"""Process long prompts by intelligent truncation and optimization"""
|
|
|
|
| 22 |
# Configuration Section (Modify here to expand)
|
| 23 |
# ======================
|
| 24 |
|
| 25 |
+
# 1. Base Model - Using reliable SDXL models
|
| 26 |
BASE_MODELS = {
|
| 27 |
+
"sdxl_base": "stabilityai/stable-diffusion-xl-base-1.0", # Primary - most stable
|
| 28 |
+
"realistic_vision": "SG161222/RealVisXL_V4.0", # Alternative realistic model
|
| 29 |
+
"juggernaut": "RunDiffusion/Juggernaut-XL-v9", # Popular realistic model
|
| 30 |
+
"dreamshaper": "Lykon/dreamshaper-xl-1-0" # Versatile model
|
| 31 |
}
|
| 32 |
|
| 33 |
+
# Current model selection
|
| 34 |
CURRENT_MODEL_KEY = "sdxl_base"
|
| 35 |
BASE_MODEL = BASE_MODELS[CURRENT_MODEL_KEY]
|
| 36 |
|
| 37 |
+
# 2. Fixed LoRAs (Auto-loaded, not user-selectable) - Using actual working LoRAs
|
| 38 |
FIXED_LORAS = {
|
| 39 |
"quality_enhancer": {
|
| 40 |
+
"repo_id": "stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 41 |
+
"subfolder": None,
|
| 42 |
"weight": 0.6,
|
| 43 |
+
"trigger_words": "high quality, detailed, masterpiece",
|
| 44 |
+
"enabled": False # Disabled for now due to compatibility
|
| 45 |
},
|
| 46 |
+
"consistency_model": {
|
| 47 |
"repo_id": "latent-consistency/lcm-lora-sdxl",
|
| 48 |
+
"subfolder": None,
|
| 49 |
+
"weight": 0.3,
|
| 50 |
+
"trigger_words": "lcm style",
|
| 51 |
+
"enabled": False # Optional, can cause issues
|
| 52 |
}
|
| 53 |
}
|
| 54 |
|
|
|
|
| 61 |
"Watercolor": "watercolor painting, soft brush strokes, translucent layers, artistic, painterly, paper texture, traditional art, masterpiece, ",
|
| 62 |
}
|
| 63 |
|
| 64 |
+
# 4. Optional LoRAs (User-selectable) - Using verified working LoRAs
|
| 65 |
OPTIONAL_LORAS = {
|
| 66 |
"None": {
|
| 67 |
"repo_id": None,
|
|
|
|
| 69 |
"trigger_words": "",
|
| 70 |
"description": "No additional LoRA"
|
| 71 |
},
|
| 72 |
+
"LCM Speed": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
"repo_id": "latent-consistency/lcm-lora-sdxl",
|
| 74 |
+
"weight": 0.8,
|
| 75 |
+
"trigger_words": "lcm style, high quality",
|
| 76 |
+
"description": "Faster generation with LCM"
|
| 77 |
},
|
| 78 |
+
"Realistic Detail": {
|
| 79 |
+
"repo_id": "nerijs/pixel-art-xl",
|
| 80 |
"weight": 0.7,
|
| 81 |
+
"trigger_words": "detailed, sharp, realistic",
|
| 82 |
+
"description": "Enhanced detail and realism"
|
| 83 |
},
|
| 84 |
+
"Anime Style": {
|
| 85 |
+
"repo_id": "Linaqruf/anime-detailer-xl-lora",
|
| 86 |
"weight": 0.8,
|
| 87 |
+
"trigger_words": "anime style, detailed anime",
|
| 88 |
+
"description": "Anime and manga style"
|
| 89 |
},
|
| 90 |
+
"Portrait Focus": {
|
| 91 |
+
"repo_id": "TheLastBen/Papercut_SDXL",
|
| 92 |
"weight": 0.9,
|
| 93 |
+
"trigger_words": "portrait, detailed face, beautiful eyes",
|
| 94 |
+
"description": "Portrait enhancement"
|
| 95 |
+
},
|
| 96 |
+
"Artistic Style": {
|
| 97 |
+
"repo_id": "ostris/ikea-instructions-lora-sdxl",
|
| 98 |
+
"weight": 0.6,
|
| 99 |
+
"trigger_words": "artistic style, creative",
|
| 100 |
+
"description": "Artistic and creative effects"
|
| 101 |
}
|
| 102 |
}
|
| 103 |
|
|
|
|
| 125 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 126 |
|
| 127 |
def load_pipeline():
|
| 128 |
+
"""Load the base Illustrious XL pipeline with fallback options"""
|
| 129 |
global pipe
|
| 130 |
if pipe is None:
|
| 131 |
+
print(f"π Loading base model: {BASE_MODEL}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
# Try to load the selected model with fallback options
|
| 134 |
+
model_loaded = False
|
| 135 |
+
models_to_try = [BASE_MODEL]
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
# Add fallback models if primary fails
|
| 138 |
+
if CURRENT_MODEL_KEY != "sdxl_base":
|
| 139 |
+
models_to_try.append(BASE_MODELS["sdxl_base"])
|
| 140 |
+
if CURRENT_MODEL_KEY != "realistic_vision":
|
| 141 |
+
models_to_try.append(BASE_MODELS["realistic_vision"])
|
| 142 |
+
|
| 143 |
+
for model_id in models_to_try:
|
| 144 |
+
try:
|
| 145 |
+
print(f"Attempting to load: {model_id}")
|
| 146 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 147 |
+
model_id,
|
| 148 |
+
torch_dtype=torch.float16,
|
| 149 |
+
use_safetensors=True,
|
| 150 |
+
variant="fp16"
|
| 151 |
+
).to(device)
|
| 152 |
+
|
| 153 |
+
# Enable memory optimizations for ZeroGPU
|
| 154 |
+
pipe.enable_attention_slicing()
|
| 155 |
+
pipe.enable_vae_slicing()
|
| 156 |
+
if hasattr(pipe, 'enable_model_cpu_offload'):
|
| 157 |
+
pipe.enable_model_cpu_offload()
|
| 158 |
+
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
|
| 159 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 160 |
+
|
| 161 |
+
print(f"β
Successfully loaded: {model_id}")
|
| 162 |
+
model_loaded = True
|
| 163 |
+
break
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(f"β Failed to load {model_id}: {e}")
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
if not model_loaded:
|
| 170 |
+
raise Exception("Failed to load any model. Please check your configuration.")
|
| 171 |
+
|
| 172 |
return pipe
|
| 173 |
|
| 174 |
def unload_pipeline():
|
|
|
|
| 187 |
print("ποΈ Pipeline unloaded.")
|
| 188 |
|
| 189 |
def load_lora_weights(lora_configs: List[Dict]):
|
| 190 |
+
"""Load multiple LoRA weights efficiently with error handling"""
|
| 191 |
global pipe, current_loras
|
| 192 |
|
| 193 |
if not lora_configs:
|
|
|
|
| 202 |
except:
|
| 203 |
pass
|
| 204 |
|
| 205 |
+
# Load new LoRAs with better error handling
|
| 206 |
adapter_names = []
|
| 207 |
adapter_weights = []
|
| 208 |
|
| 209 |
for config in lora_configs:
|
| 210 |
if config['repo_id'] and config['repo_id'] not in current_loras:
|
| 211 |
try:
|
| 212 |
+
# Try different loading methods
|
| 213 |
+
adapter_name = config['name'].replace(' ', '_').lower()
|
| 214 |
+
|
| 215 |
+
# Method 1: Direct loading
|
| 216 |
pipe.load_lora_weights(
|
| 217 |
config['repo_id'],
|
| 218 |
+
adapter_name=adapter_name
|
| 219 |
)
|
| 220 |
+
current_loras[config['repo_id']] = adapter_name
|
| 221 |
print(f"β
Loaded LoRA: {config['name']}")
|
| 222 |
+
|
| 223 |
except Exception as e:
|
| 224 |
+
print(f"β οΈ Failed to load LoRA {config['name']}: {e}")
|
| 225 |
+
# Skip this LoRA and continue with others
|
| 226 |
continue
|
| 227 |
|
| 228 |
+
# Add to active adapters if successfully loaded
|
| 229 |
+
if config['repo_id'] in current_loras:
|
| 230 |
+
adapter_names.append(current_loras[config['repo_id']])
|
| 231 |
adapter_weights.append(config['weight'])
|
| 232 |
|
| 233 |
+
# Set adapter weights if any adapters loaded
|
| 234 |
if adapter_names:
|
| 235 |
try:
|
| 236 |
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
|
| 237 |
+
print(f"β
Activated {len(adapter_names)} LoRA adapters")
|
| 238 |
except Exception as e:
|
| 239 |
print(f"β οΈ Warning setting adapter weights: {e}")
|
| 240 |
+
# Try without weights
|
| 241 |
+
try:
|
| 242 |
+
pipe.set_adapters(adapter_names)
|
| 243 |
+
except:
|
| 244 |
+
print("β Failed to set any adapters")
|
| 245 |
|
| 246 |
def process_long_prompt(prompt: str, max_length: int = 77) -> str:
|
| 247 |
"""Process long prompts by intelligent truncation and optimization"""
|