File size: 6,958 Bytes
44cf422
 
 
 
 
 
 
 
 
 
 
 
64224f9
44cf422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64224f9
44cf422
 
64224f9
44cf422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64224f9
 
44cf422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64224f9
 
 
44cf422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed90480
44cf422
ed90480
44cf422
ed90480
44cf422
 
 
64224f9
 
 
 
 
 
 
 
 
 
 
 
 
 
44cf422
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load your custom model
model_path = "alexdev404/gpt2-finetuned-chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

def generate_response(prompt, system_message, conversation_history=None, max_tokens=75, temperature=0.78, top_p=0.85, repetition_penalty=1.031, top_k=55):
    """Generate using your custom training format"""
    
    # Build context using your NEW format
    context = ""
    if conversation_history:
        # Last 2-3 exchanges
        # Use more conversation history to fill GPT-2's context window (1024 tokens)
        # Estimate ~20-30 tokens per exchange, so we can fit ~30-40 exchanges
        recent = conversation_history[-30:] if len(conversation_history) > 30 else conversation_history
        is_first_message = False
        for i, message in enumerate(recent):
            if i == 0:
                is_first_message = True
                context += f"<|start|>User:<|message|>{system_message}<|end|>\n<|start|>Assistant:<|message|>Hey, what's up nice to meet you. I'm glad to be here!<|end|>\n"
            if message['role'] == 'user':
                context += f"<|start|>User:<|message|>{message['content']}<|end|>\n"
            else:
                context += f"<|start|>Assistant:<|message|>{message['content']}<|end|>\n"

    # Format input to match training
    # formatted_input = None
    # if is_first_message:
    #     formatted_input = f"{context}<|start|>User:<|message|>{prompt}<|end|>\n<|start|>Assistant:<|message|>"
    # else:
    formatted_input = f"{context}<|start|>User:<|message|>{prompt}<|end|>\n<|start|>Assistant:<|message|>"

    # Debug: Print the formatted input
    print(f"Formatted input: {repr(formatted_input)}")

    inputs = tokenizer(
        formatted_input, 
        return_tensors="pt", 
        padding=True, 
        truncation=True,
        max_length=512
    )
    
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,    # Consider top 55 tokens
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            repetition_penalty=repetition_penalty,
            eos_token_id=tokenizer.encode("<|end|>", add_special_tokens=False)[0]
        )

    # Decode only new tokens
    new_tokens = outputs[0][inputs.input_ids.shape[-1]:]
    response = tokenizer.decode(new_tokens, skip_special_tokens=False)
    
    return response.strip()

def respond(
    message,
    history: list[dict[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    repetition_penalty,
    top_k,
):
    """
    Modified to use your custom GPT-2 model instead of Hugging Face Inference API
    """
    # Convert gradio history format to your format
    # Gradio history is already in the correct format: [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
    conversation_history = history  # Use history directly
    
    # Debug: Print the formatted input to see what's being sent to the model
    print(f"User message: {message}")
    print(f"History length: {len(conversation_history)}")
    
    # Generate response using your model
    response = generate_response(
        message, 
        system_message,
        conversation_history, 
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        top_k=top_k
    )
    
    # print(f"Raw response: {repr(response)}")
    
    # Clean up the response
    if "<|end|>" in response:
        response = response.split("<|end|>")[0]
    
    # Remove any remaining special tokens
    # response = response.replace("<|start|>", "")
    # response = response.replace("<|message|>", "")
    # response = response.replace("User:", "")
    # response = response.replace("Assistant:", "")
    
    # print(f"Cleaned response: {repr(response)}")
    
    return response.strip()


"""
Gradio ChatInterface for your custom GPT-2 model
"""
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    title="Chat with the model",
    description="Chat with the GPT-2-based model trained on WhatsApp data",
    additional_inputs=[
        gr.Textbox(value="Hey I\'m Alice and you\'re Grace. You are having a casual peer-to-peer conversation with someone. Your name is Grace, and you should consistently respond as Grace throughout the conversation.\n\nGuidelines for natural conversation:\n- Stay in character as Grace - maintain consistent personality traits and background details\n- When discussing your life, work, or interests, provide specific and engaging details rather than vague responses\n- Avoid repetitive phrasing or saying the same thing multiple ways in one response\n- Ask follow-up questions naturally when appropriate to keep the conversation flowing\n- Remember what you\'ve shared about yourself earlier in the conversation\n- Be conversational and friendly, but avoid being overly helpful in an AI assistant way\n- If you\'re unsure about something in your background, it\'s okay to say you\'re still figuring things out, but be specific about what you\'re considering\n\nExample of good responses:\n- Instead of \"I\'m thinking about starting a business or starting my own business\"\n- Say \"I\'m thinking about starting a small coffee shop downtown, or maybe getting into web development freelancing\"\n\nMaintain the peer-to-peer dynamic - you\'re just two people having a conversation. The user has entered the chat. Introduce yourself.", label="System message"),
        gr.Slider(minimum=10, maximum=150, value=75, step=5, label="Max new tokens"),
        gr.Slider(minimum=0.01, maximum=1.2, value=0.7, step=0.01, label="Temperature"),
        gr.Slider(
            minimum=0.01,
            maximum=1.0,
            value=0.85,
            step=0.01,
            label="Top-p (nucleus sampling)",
        ),
        gr.Slider(
            minimum=1.0,
            maximum=1.5,
            value=1.031,
            step=0.001,
            label="Repetition penalty",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=55,
            step=1,
            label="Top-k (prediction sampling)",
        ),
    ],
)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    chatbot.render()

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",  # Makes it accessible from other devices on your network
        server_port=7860,       # Default gradio port
        share=False,            # Set to True to get a public shareable link
        debug=True
    )