import gradio as gr import torch import time from transformers import T5Tokenizer, T5ForConditionalGeneration from nltk.tokenize import sent_tokenize class DipperParaphraser(object): def __init__(self, model="kalpeshk2011/dipper-paraphraser-xxl", verbose=True): time1 = time.time() self.tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-xxl') self.model = T5ForConditionalGeneration.from_pretrained(model) if verbose: print(f"{model} model loaded in {time.time() - time1}") self.model.cuda() self.model.eval() def paraphrase(self, input_text, lex_diversity, order_diversity, prefix="", sent_interval=3, **kwargs): assert lex_diversity in [0, 20, 40, 60, 80, 100], "Lexical diversity must be one of 0, 20, 40, 60, 80, 100." assert order_diversity in [0, 20, 40, 60, 80, 100], "Order diversity must be one of 0, 20, 40, 60, 80, 100." lex_code = int(100 - lex_diversity) order_code = int(100 - order_diversity) input_text = " ".join(input_text.split()) sentences = sent_tokenize(input_text) prefix = " ".join(prefix.replace("\n", " ").split()) output_text = "" for sent_idx in range(0, len(sentences), sent_interval): curr_sent_window = " ".join(sentences[sent_idx:sent_idx + sent_interval]) final_input_text = f"lexical = {lex_code}, order = {order_code}" if prefix: final_input_text += f" {prefix}" final_input_text += f" {curr_sent_window} " final_input = self.tokenizer([final_input_text], return_tensors="pt") final_input = {k: v.cuda() for k, v in final_input.items()} with torch.inference_mode(): outputs = self.model.generate(**final_input, **kwargs) outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) prefix += " " + outputs[0] output_text += " " + outputs[0] return output_text.strip() dp = None def paraphrase_interface(prompt, input_text, lex_diversity, order_diversity, sent_interval, top_p, top_k, max_length, do_sample): global dp if dp is None: dp = DipperParaphraser(verbose=False) kwargs = { "do_sample": do_sample, "top_p": top_p, "top_k": top_k if top_k else None, "max_length": max_length, } return dp.paraphrase( input_text, lex_diversity=lex_diversity, order_diversity=order_diversity, prefix=prompt, sent_interval=sent_interval, **kwargs ) with gr.Blocks() as demo: gr.Markdown("# DIPPER Paraphraser XXL") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt (Optional)", value="In a shocking finding, scientist discovered a herd of unicorns living in a remote valley.") input_text = gr.Textbox(label="Text to Paraphrase", lines=8, value="They have never been known to mingle with humans. Today, it is believed these unicorns live in an unspoilt environment which is surrounded by mountains. Its edge is protected by a thick wattle of wattle trees, giving it a majestic appearance. Along with their so-called miracle of multicolored coat, their golden coloured feather makes them look like mirages. Some of them are rumored to be capable of speaking a large amount of different languages. They feed on elk and goats as they were selected from those animals that possess a fierceness to them, and can \"eat\" them with their long horns.") lex_diversity = gr.Dropdown(label="Lexical Diversity", choices=[0, 20, 40, 60, 80, 100], value=60) order_diversity = gr.Dropdown(label="Order Diversity", choices=[0, 20, 40, 60, 80, 100], value=0) sent_interval = gr.Number(label="Sentence Interval", value=3, precision=0) top_p = gr.Number(label="Top P (sampling)", value=0.75) top_k = gr.Number(label="Top K (sampling, None for default)", value=None, precision=0) max_length = gr.Number(label="Max Length", value=512, precision=0) do_sample = gr.Checkbox(label="Enable Sampling", value=True) btn = gr.Button("Paraphrase") with gr.Column(): output = gr.Textbox(label="Paraphrased Output", lines=8) btn.click( paraphrase_interface, inputs=[prompt, input_text, lex_diversity, order_diversity, sent_interval, top_p, top_k, max_length, do_sample], outputs=output ) if __name__ == "__main__": demo.launch()