Update app.py
Browse files
app.py
CHANGED
|
@@ -27,8 +27,6 @@ from src.misc.image_io import save_interpolated_video
|
|
| 27 |
from src.model.model.anysplat import AnySplat
|
| 28 |
from src.model.ply_export import export_ply
|
| 29 |
from src.utils.image import process_image
|
| 30 |
-
import trimesh
|
| 31 |
-
import numpy as np
|
| 32 |
|
| 33 |
os.environ["ANYSPLAT_PROCESSED"] = f"{os.getcwd()}/proprocess_results"
|
| 34 |
|
|
@@ -65,7 +63,6 @@ def get_reconstructed_scene(outdir, model, device):
|
|
| 65 |
)
|
| 66 |
|
| 67 |
plyfile = os.path.join(outdir, "gaussians.ply")
|
| 68 |
-
glbfile = os.path.join(outdir, "gaussians.glb")
|
| 69 |
|
| 70 |
export_ply(
|
| 71 |
gaussians.means[0],
|
|
@@ -77,24 +74,9 @@ def get_reconstructed_scene(outdir, model, device):
|
|
| 77 |
save_sh_dc_only=True,
|
| 78 |
)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
# 1. Load PLY and preserve attributes
|
| 82 |
-
mesh = trimesh.load(plyfile, process=False)
|
| 83 |
-
|
| 84 |
-
# 2. Check or assign vertex colors
|
| 85 |
-
if mesh.visual.vertex_colors is None or mesh.visual.vertex_colors.shape[1] < 4:
|
| 86 |
-
# Example: assume mesh.metadata['vertex_color'] holds (N×3) array
|
| 87 |
-
rgb = np.array(mesh.metadata['vertex_color'], dtype=np.uint8)
|
| 88 |
-
alpha = np.full((rgb.shape[0], 1), 255, dtype=np.uint8)
|
| 89 |
-
mesh.visual.vertex_colors = np.concatenate([rgb, alpha], axis=1)
|
| 90 |
-
|
| 91 |
-
# 3. Export GLB
|
| 92 |
-
mesh.export(glbfile, file_type='glb')
|
| 93 |
-
print("Export complete: scene_colored.glb")
|
| 94 |
-
|
| 95 |
# Clean up
|
| 96 |
torch.cuda.empty_cache()
|
| 97 |
-
return
|
| 98 |
|
| 99 |
|
| 100 |
# 2) Handle uploaded video/images --> produce target_dir + images
|
|
|
|
| 27 |
from src.model.model.anysplat import AnySplat
|
| 28 |
from src.model.ply_export import export_ply
|
| 29 |
from src.utils.image import process_image
|
|
|
|
|
|
|
| 30 |
|
| 31 |
os.environ["ANYSPLAT_PROCESSED"] = f"{os.getcwd()}/proprocess_results"
|
| 32 |
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
plyfile = os.path.join(outdir, "gaussians.ply")
|
|
|
|
| 66 |
|
| 67 |
export_ply(
|
| 68 |
gaussians.means[0],
|
|
|
|
| 74 |
save_sh_dc_only=True,
|
| 75 |
)
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# Clean up
|
| 78 |
torch.cuda.empty_cache()
|
| 79 |
+
return plyfile, video, depth_colored
|
| 80 |
|
| 81 |
|
| 82 |
# 2) Handle uploaded video/images --> produce target_dir + images
|