File size: 16,610 Bytes
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Codes adapted from [SeedVR]
# https://github.com/ByteDance-Seed/SeedVR/tree/main/common/distributed

"""

Advanced distributed functions for sequence parallel.

"""

import torch
from typing import Any, List, Optional, Tuple, Union
import torch.distributed as dist
from torch import Tensor

from .basic import get_global_rank, get_world_size


_DATA_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_CPU_GROUP = None


_CFG_PARALLEL_GROUP = None
_CFG_PARALLEL_CPU_GROUP = None

def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
    """

    Get data parallel process group.

    """
    return _DATA_PARALLEL_GROUP


def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
    """

    Get sequence parallel process group.

    """
    return _SEQUENCE_PARALLEL_GROUP


def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
    """

    Get sequence parallel CPU process group.

    """
    return _SEQUENCE_PARALLEL_CPU_GROUP


def get_data_parallel_rank() -> int:
    """

    Get data parallel rank.

    """
    group = get_data_parallel_group()
    return dist.get_rank(group) if group else get_global_rank()


def get_data_parallel_world_size() -> int:
    """

    Get data parallel world size.

    """
    group = get_data_parallel_group()
    return dist.get_world_size(group) if group else get_world_size()


def get_sequence_parallel_rank() -> int:
    """

    Get sequence parallel rank.

    """
    group = get_sequence_parallel_group()
    return dist.get_rank(group) if group else 0


def get_sequence_parallel_world_size() -> int:
    """

    Get sequence parallel world size.

    """
    group = get_sequence_parallel_group()
    return dist.get_world_size(group) if group else 1


def init_unified_parallel(unified_parallel_size):
    global _SEQUENCE_PARALLEL_GROUP
    global _SEQUENCE_PARALLEL_CPU_GROUP

    if unified_parallel_size == 1:
        return

    assert dist.is_initialized()
    world_size = dist.get_world_size()
    rank = dist.get_rank()
    assert world_size % unified_parallel_size == 0
    data_parallel_size = world_size // unified_parallel_size

    for i in range(data_parallel_size):
        # build unified parallel group
        start_rank = i * unified_parallel_size
        end_rank = start_rank + unified_parallel_size
        unified_parallel_ranks = range(start_rank, end_rank)
        unified_parallel_group = dist.new_group(unified_parallel_ranks)
        unified_parallel_cpu_group = dist.new_group(unified_parallel_ranks, backend="gloo")
        if rank in unified_parallel_ranks:
            _SEQUENCE_PARALLEL_GROUP = unified_parallel_group
            _SEQUENCE_PARALLEL_CPU_GROUP = unified_parallel_cpu_group


def get_unified_parallel_group():
    global _SEQUENCE_PARALLEL_GROUP
    return _SEQUENCE_PARALLEL_GROUP


def get_unified_parallel_cpu_group():
    global _SEQUENCE_PARALLEL_CPU_GROUP
    return _SEQUENCE_PARALLEL_CPU_GROUP


def get_unified_parallel_rank():
    group = get_unified_parallel_group()
    return dist.get_rank(group) if group else 0


def get_unified_parallel_world_size():
    group = get_unified_parallel_group()
    return dist.get_world_size(group) if group else 1


def is_unified_parallel_initialized():
    group = get_unified_parallel_group()
    return group is not None


def pad_tensor(x: Tensor, dim: int, padding_size: int):
    shape = list(x.shape)
    shape[dim] = padding_size
    pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
    return torch.cat([x, pad], dim=dim)


class Slice(torch.autograd.Function):
    @staticmethod
    def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int, scale_grad: bool) -> Tensor:
        ctx.group = group
        ctx.rank = dist.get_rank(group)
        seq_world_size = dist.get_world_size(group)
        ctx.seq_world_size = seq_world_size
        ctx.dim = dim
        ctx.scale_grad = scale_grad
        dim_size = local_input.shape[dim]
        if not ctx.group:
            return local_input
        return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()

    @staticmethod
    def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
        if not ctx.group:
            return None, grad_output, None, None
        dim_size = list(grad_output.size())
        split_size = dim_size[0]
        dim_size[0] = dim_size[0] * ctx.seq_world_size
        output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
        dist.all_gather_into_tensor(output, grad_output, group=ctx.group)
        if ctx.scale_grad:
            output = output / ctx.seq_world_size
        return (None, torch.cat(output.split(split_size), dim=ctx.dim), None, None)


def gather_outputs(

    x: Tensor,

    gather_dim: int,

    padding_dim: Optional[int] = None,

    unpad_dim_size: Optional[int] = None,

    scale_grad=True,

):
    """

    A func to gather the outputs for the model result in sequence parallel

    """
    group = get_unified_parallel_group()
    if not group:
        return x
    x = Gather.apply(group, x, gather_dim, scale_grad)
    if padding_dim is not None:
        x = unpadding_tensor_for_seqeunce_parallel(x, padding_dim, unpad_dim_size)
    return x


def unpadding_tensor_for_seqeunce_parallel(x: Tensor, dim: int, unpadded_dim_size: int):
    """

    A func to remove the padding part of the tensor based on its original shape

    """
    group = get_unified_parallel_group()
    if group is None:
        return x
    sp_world = get_unified_parallel_world_size()
    if unpadded_dim_size % sp_world == 0:
        return x
    padding_size = sp_world - (unpadded_dim_size % sp_world)
    assert (padding_size + unpadded_dim_size) % sp_world == 0
    return unpad_tensor(x, dim=dim, padding_size=padding_size)


def gather_seq_scatter_heads_qkv(

    qkv_tensor: Tensor,

    seq_dim: int,

    unpadded_dim_size: Optional[int] = None,

    restore_shape: bool = True,

    async_op: bool = False,

):
    """

    A func to sync splited qkv tensor

    qkv_tensor: the tensor we want to do alltoall with. The last dim must

        be the projection_idx, which we will split into 3 part. After

        spliting, the gather idx will be projecttion_idx + 1

    seq_dim: gather_dim for all2all comm

    restore_shape: if True, output will has the same shape length as input

    """
    group = get_unified_parallel_group()
    if not group:
        return qkv_tensor
    world = get_unified_parallel_world_size()
    orig_shape = qkv_tensor.shape
    scatter_dim = qkv_tensor.dim()
    bef_all2all_shape = list(orig_shape)
    qkv_proj_dim = bef_all2all_shape[-1]
    bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
    qkv_tensor = qkv_tensor.view(bef_all2all_shape)
    if async_op:
        return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
    else:
        qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)

        if restore_shape:
            out_shape = list(orig_shape)
            out_shape[seq_dim] *= world
            out_shape[-1] = qkv_proj_dim // world
            qkv_tensor = qkv_tensor.view(out_shape)

        # remove padding
        if unpadded_dim_size and unpadded_dim_size % world != 0:
            padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size
            qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size)

        return qkv_tensor


def gather_seq_scatter_double_head(

    qkv_tensor: Tensor,

    seq_dim: int,

    unpadded_dim_size: Optional[int] = None,

    restore_shape: bool = True,

    async_op: bool = False,

):
    """

    A func to sync splited qkv tensor

    qkv_tensor: the tensor we want to do alltoall with. The last dim must

        be the projection_idx, which we will split into 3 part. After

        spliting, the gather idx will be projecttion_idx + 1

    seq_dim: gather_dim for all2all comm

    restore_shape: if True, output will has the same shape length as input

    """
    qkv1_shape = qkv_tensor.shape
    group = get_unified_parallel_group()
    if not group:
        return qkv_tensor
    world = get_unified_parallel_world_size()
    orig_shape = qkv_tensor.shape
    scatter_dim = qkv_tensor.dim()
    bef_all2all_shape = list(orig_shape)
    qkv_proj_dim = bef_all2all_shape[-1]
    bef_all2all_shape = bef_all2all_shape[:-1] + [2, qkv_proj_dim // 2]
    qkv_tensor = qkv_tensor.view(bef_all2all_shape)
    qkv2_shape = qkv_tensor.shape
    if async_op:
        return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
    else:
        qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
        qkv3_shape = qkv_tensor.shape

        if restore_shape:
            out_shape = list(orig_shape)
            out_shape[seq_dim] *= world
            out_shape[-1] = qkv_proj_dim // world
            qkv_tensor = qkv_tensor.view(out_shape)
            qkv4_shape = qkv_tensor.shape

        # remove padding
        if unpadded_dim_size and unpadded_dim_size % world != 0:
            padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size
            qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size)
            qkv5_shape = qkv_tensor.shape
        
        return qkv_tensor


class SeqAllToAll(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx: Any,

        group: dist.ProcessGroup,

        local_input: Tensor,

        scatter_dim: int,

        gather_dim: int,

        async_op: bool,

    ) -> Tensor:
        ctx.group = group
        ctx.scatter_dim = scatter_dim
        ctx.gather_dim = gather_dim
        ctx.async_op = async_op
        return all_to_all_tensor(local_input, scatter_dim, gather_dim, group, async_op)

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
        if ctx.async_op:
            input_t = torch.cat(grad_output[1:], dim=ctx.gather_dim).contiguous()
        else:
            input_t = grad_output[0]
        return (
            None,
            all_to_all_tensor(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group, False),
            None,
            None,
            None,
            None,
        )


def all_to_all_tensor(

    x: Tensor,

    scatter_dim: int,

    gather_dim: int,

    group: dist.ProcessGroup,

    async_op: bool = False,

):
    if scatter_dim <= 1 and gather_dim <= 1:
        return _all_to_all_single(x, scatter_dim, gather_dim, group, async_op)
    else:
        return _all_to_all(x, scatter_dim, gather_dim, group, async_op)  # 走这里


def _all_to_all(

    local_input: Tensor,

    scatter_dim: int,

    gather_dim: int,

    group: dist.ProcessGroup,

    async_op: bool = False,

):
    seq_world_size = dist.get_world_size(group)
    input_list = [t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)]
    output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
    comm = dist.all_to_all(output_list, input_list, group=group, async_op=async_op)
    if async_op:

        def wait():
            comm.wait()
            return torch.cat(output_list, dim=gather_dim).contiguous()

        return wait
    return torch.cat(output_list, dim=gather_dim).contiguous()


def _all_to_all_single(x: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False):
    """

    A function to do all-to-all on the first two dim

    """
    sp_world_size = dist.get_world_size(group)
    assert scatter_dim <= 1, "scatter_dim must be 0 or 1 when using all_to_all_single!"
    assert gather_dim <= 1, "gather_dim must be 0 or 1 when using all_to_all_single!"
    if scatter_dim != 0:
        gather_dim_bef = x.shape[gather_dim]
        scatter_dim_bef = x.shape[scatter_dim]
        x = (
            x.reshape([gather_dim_bef, sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:]))
            .transpose(0, 1)
            .reshape([gather_dim_bef * sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:]))
            .contiguous()
        )

    output = torch.empty_like(x)
    comm = dist.all_to_all_single(output, x.contiguous(), group=group, async_op=async_op)

    if async_op:

        def wait():
            comm.wait()
            if scatter_dim == 0:
                return torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim)
            else:
                return output

        return wait

    if scatter_dim == 0:
        output = torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim)
    return output


def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
    """

    A func to sync attention result with alltoall in sequence parallel

    """
    group = get_unified_parallel_group()
    if not group:
        return x
    dim_size = x.size(seq_dim)
    sp_world = get_unified_parallel_world_size()
    if dim_size % sp_world != 0:
        padding_size = sp_world - (dim_size % sp_world)
        x = pad_tensor(x, seq_dim, padding_size)
    return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)


def unpad_tensor(x: Tensor, dim: int, padding_size: int):
    slc = [slice(None)] * len(x.shape)
    slc[dim] = slice(0, -padding_size)
    return x[slc]


class Gather(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx: Any,

        group: dist.ProcessGroup,

        local_input: Tensor,

        dim: int,

        grad_scale: Optional[bool] = False,

    ) -> Tensor:
        ctx.group = group
        ctx.rank = dist.get_rank(group)
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        seq_world_size = dist.get_world_size(group)
        ctx.seq_world_size = seq_world_size
        dim_size = list(local_input.size())
        split_size = dim_size[0]
        ctx.part_size = dim_size[dim]
        dim_size[0] = dim_size[0] * seq_world_size
        output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
        dist.all_gather_into_tensor(output, local_input.contiguous(), group=ctx.group)
        return torch.cat(output.split(split_size), dim=dim)

    @staticmethod
    def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
        if ctx.grad_scale:
            grad_output = grad_output * ctx.seq_world_size
        return (
            None,
            grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
            None,
            None,
        )


def slice_tensor(tensor, dim, start, end):
    indices = slice(start, end)
    return tensor[(slice(None),) * dim + (indices,)]


def init_model_shard_cpu_group(sharding_strategy: str, device_mesh: Optional[Tuple] = None):
    """

    Initialize CPU process group of model sharding.

    """
    global _MODEL_SHARD_CPU_GROUP
    assert dist.is_initialized()
    world_size = dist.get_world_size()
    rank = dist.get_rank()
    if device_mesh is not None:
        num_shards_per_group = device_mesh[1]
    elif "HYBRID" in sharding_strategy:
        num_shards_per_group = min(8, world_size)
    else:
        num_shards_per_group = world_size
    num_groups = world_size // num_shards_per_group
    for i in range(num_groups):
        start_rank = i * num_shards_per_group
        end_rank = (i + 1) * num_shards_per_group
        ranks = range(start_rank, end_rank)
        cpu_group = dist.new_group(ranks, backend="gloo")
        if rank in ranks:
            _MODEL_SHARD_CPU_GROUP = cpu_group