Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,610 Bytes
295978e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Codes adapted from [SeedVR]
# https://github.com/ByteDance-Seed/SeedVR/tree/main/common/distributed
"""
Advanced distributed functions for sequence parallel.
"""
import torch
from typing import Any, List, Optional, Tuple, Union
import torch.distributed as dist
from torch import Tensor
from .basic import get_global_rank, get_world_size
_DATA_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_CPU_GROUP = None
_CFG_PARALLEL_GROUP = None
_CFG_PARALLEL_CPU_GROUP = None
def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
"""
Get data parallel process group.
"""
return _DATA_PARALLEL_GROUP
def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
"""
Get sequence parallel process group.
"""
return _SEQUENCE_PARALLEL_GROUP
def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
"""
Get sequence parallel CPU process group.
"""
return _SEQUENCE_PARALLEL_CPU_GROUP
def get_data_parallel_rank() -> int:
"""
Get data parallel rank.
"""
group = get_data_parallel_group()
return dist.get_rank(group) if group else get_global_rank()
def get_data_parallel_world_size() -> int:
"""
Get data parallel world size.
"""
group = get_data_parallel_group()
return dist.get_world_size(group) if group else get_world_size()
def get_sequence_parallel_rank() -> int:
"""
Get sequence parallel rank.
"""
group = get_sequence_parallel_group()
return dist.get_rank(group) if group else 0
def get_sequence_parallel_world_size() -> int:
"""
Get sequence parallel world size.
"""
group = get_sequence_parallel_group()
return dist.get_world_size(group) if group else 1
def init_unified_parallel(unified_parallel_size):
global _SEQUENCE_PARALLEL_GROUP
global _SEQUENCE_PARALLEL_CPU_GROUP
if unified_parallel_size == 1:
return
assert dist.is_initialized()
world_size = dist.get_world_size()
rank = dist.get_rank()
assert world_size % unified_parallel_size == 0
data_parallel_size = world_size // unified_parallel_size
for i in range(data_parallel_size):
# build unified parallel group
start_rank = i * unified_parallel_size
end_rank = start_rank + unified_parallel_size
unified_parallel_ranks = range(start_rank, end_rank)
unified_parallel_group = dist.new_group(unified_parallel_ranks)
unified_parallel_cpu_group = dist.new_group(unified_parallel_ranks, backend="gloo")
if rank in unified_parallel_ranks:
_SEQUENCE_PARALLEL_GROUP = unified_parallel_group
_SEQUENCE_PARALLEL_CPU_GROUP = unified_parallel_cpu_group
def get_unified_parallel_group():
global _SEQUENCE_PARALLEL_GROUP
return _SEQUENCE_PARALLEL_GROUP
def get_unified_parallel_cpu_group():
global _SEQUENCE_PARALLEL_CPU_GROUP
return _SEQUENCE_PARALLEL_CPU_GROUP
def get_unified_parallel_rank():
group = get_unified_parallel_group()
return dist.get_rank(group) if group else 0
def get_unified_parallel_world_size():
group = get_unified_parallel_group()
return dist.get_world_size(group) if group else 1
def is_unified_parallel_initialized():
group = get_unified_parallel_group()
return group is not None
def pad_tensor(x: Tensor, dim: int, padding_size: int):
shape = list(x.shape)
shape[dim] = padding_size
pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
return torch.cat([x, pad], dim=dim)
class Slice(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int, scale_grad: bool) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
ctx.dim = dim
ctx.scale_grad = scale_grad
dim_size = local_input.shape[dim]
if not ctx.group:
return local_input
return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
if not ctx.group:
return None, grad_output, None, None
dim_size = list(grad_output.size())
split_size = dim_size[0]
dim_size[0] = dim_size[0] * ctx.seq_world_size
output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
dist.all_gather_into_tensor(output, grad_output, group=ctx.group)
if ctx.scale_grad:
output = output / ctx.seq_world_size
return (None, torch.cat(output.split(split_size), dim=ctx.dim), None, None)
def gather_outputs(
x: Tensor,
gather_dim: int,
padding_dim: Optional[int] = None,
unpad_dim_size: Optional[int] = None,
scale_grad=True,
):
"""
A func to gather the outputs for the model result in sequence parallel
"""
group = get_unified_parallel_group()
if not group:
return x
x = Gather.apply(group, x, gather_dim, scale_grad)
if padding_dim is not None:
x = unpadding_tensor_for_seqeunce_parallel(x, padding_dim, unpad_dim_size)
return x
def unpadding_tensor_for_seqeunce_parallel(x: Tensor, dim: int, unpadded_dim_size: int):
"""
A func to remove the padding part of the tensor based on its original shape
"""
group = get_unified_parallel_group()
if group is None:
return x
sp_world = get_unified_parallel_world_size()
if unpadded_dim_size % sp_world == 0:
return x
padding_size = sp_world - (unpadded_dim_size % sp_world)
assert (padding_size + unpadded_dim_size) % sp_world == 0
return unpad_tensor(x, dim=dim, padding_size=padding_size)
def gather_seq_scatter_heads_qkv(
qkv_tensor: Tensor,
seq_dim: int,
unpadded_dim_size: Optional[int] = None,
restore_shape: bool = True,
async_op: bool = False,
):
"""
A func to sync splited qkv tensor
qkv_tensor: the tensor we want to do alltoall with. The last dim must
be the projection_idx, which we will split into 3 part. After
spliting, the gather idx will be projecttion_idx + 1
seq_dim: gather_dim for all2all comm
restore_shape: if True, output will has the same shape length as input
"""
group = get_unified_parallel_group()
if not group:
return qkv_tensor
world = get_unified_parallel_world_size()
orig_shape = qkv_tensor.shape
scatter_dim = qkv_tensor.dim()
bef_all2all_shape = list(orig_shape)
qkv_proj_dim = bef_all2all_shape[-1]
bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
if async_op:
return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
else:
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
if restore_shape:
out_shape = list(orig_shape)
out_shape[seq_dim] *= world
out_shape[-1] = qkv_proj_dim // world
qkv_tensor = qkv_tensor.view(out_shape)
# remove padding
if unpadded_dim_size and unpadded_dim_size % world != 0:
padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size
qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size)
return qkv_tensor
def gather_seq_scatter_double_head(
qkv_tensor: Tensor,
seq_dim: int,
unpadded_dim_size: Optional[int] = None,
restore_shape: bool = True,
async_op: bool = False,
):
"""
A func to sync splited qkv tensor
qkv_tensor: the tensor we want to do alltoall with. The last dim must
be the projection_idx, which we will split into 3 part. After
spliting, the gather idx will be projecttion_idx + 1
seq_dim: gather_dim for all2all comm
restore_shape: if True, output will has the same shape length as input
"""
qkv1_shape = qkv_tensor.shape
group = get_unified_parallel_group()
if not group:
return qkv_tensor
world = get_unified_parallel_world_size()
orig_shape = qkv_tensor.shape
scatter_dim = qkv_tensor.dim()
bef_all2all_shape = list(orig_shape)
qkv_proj_dim = bef_all2all_shape[-1]
bef_all2all_shape = bef_all2all_shape[:-1] + [2, qkv_proj_dim // 2]
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
qkv2_shape = qkv_tensor.shape
if async_op:
return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
else:
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op)
qkv3_shape = qkv_tensor.shape
if restore_shape:
out_shape = list(orig_shape)
out_shape[seq_dim] *= world
out_shape[-1] = qkv_proj_dim // world
qkv_tensor = qkv_tensor.view(out_shape)
qkv4_shape = qkv_tensor.shape
# remove padding
if unpadded_dim_size and unpadded_dim_size % world != 0:
padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size
qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size)
qkv5_shape = qkv_tensor.shape
return qkv_tensor
class SeqAllToAll(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
async_op: bool,
) -> Tensor:
ctx.group = group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.async_op = async_op
return all_to_all_tensor(local_input, scatter_dim, gather_dim, group, async_op)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
if ctx.async_op:
input_t = torch.cat(grad_output[1:], dim=ctx.gather_dim).contiguous()
else:
input_t = grad_output[0]
return (
None,
all_to_all_tensor(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group, False),
None,
None,
None,
None,
)
def all_to_all_tensor(
x: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
async_op: bool = False,
):
if scatter_dim <= 1 and gather_dim <= 1:
return _all_to_all_single(x, scatter_dim, gather_dim, group, async_op)
else:
return _all_to_all(x, scatter_dim, gather_dim, group, async_op) # 走这里
def _all_to_all(
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
async_op: bool = False,
):
seq_world_size = dist.get_world_size(group)
input_list = [t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
comm = dist.all_to_all(output_list, input_list, group=group, async_op=async_op)
if async_op:
def wait():
comm.wait()
return torch.cat(output_list, dim=gather_dim).contiguous()
return wait
return torch.cat(output_list, dim=gather_dim).contiguous()
def _all_to_all_single(x: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False):
"""
A function to do all-to-all on the first two dim
"""
sp_world_size = dist.get_world_size(group)
assert scatter_dim <= 1, "scatter_dim must be 0 or 1 when using all_to_all_single!"
assert gather_dim <= 1, "gather_dim must be 0 or 1 when using all_to_all_single!"
if scatter_dim != 0:
gather_dim_bef = x.shape[gather_dim]
scatter_dim_bef = x.shape[scatter_dim]
x = (
x.reshape([gather_dim_bef, sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:]))
.transpose(0, 1)
.reshape([gather_dim_bef * sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:]))
.contiguous()
)
output = torch.empty_like(x)
comm = dist.all_to_all_single(output, x.contiguous(), group=group, async_op=async_op)
if async_op:
def wait():
comm.wait()
if scatter_dim == 0:
return torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim)
else:
return output
return wait
if scatter_dim == 0:
output = torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim)
return output
def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
"""
A func to sync attention result with alltoall in sequence parallel
"""
group = get_unified_parallel_group()
if not group:
return x
dim_size = x.size(seq_dim)
sp_world = get_unified_parallel_world_size()
if dim_size % sp_world != 0:
padding_size = sp_world - (dim_size % sp_world)
x = pad_tensor(x, seq_dim, padding_size)
return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)
def unpad_tensor(x: Tensor, dim: int, padding_size: int):
slc = [slice(None)] * len(x.shape)
slc[dim] = slice(0, -padding_size)
return x[slc]
class Gather(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
dim: int,
grad_scale: Optional[bool] = False,
) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
ctx.dim = dim
ctx.grad_scale = grad_scale
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
dim_size = list(local_input.size())
split_size = dim_size[0]
ctx.part_size = dim_size[dim]
dim_size[0] = dim_size[0] * seq_world_size
output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
dist.all_gather_into_tensor(output, local_input.contiguous(), group=ctx.group)
return torch.cat(output.split(split_size), dim=dim)
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
if ctx.grad_scale:
grad_output = grad_output * ctx.seq_world_size
return (
None,
grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
None,
None,
)
def slice_tensor(tensor, dim, start, end):
indices = slice(start, end)
return tensor[(slice(None),) * dim + (indices,)]
def init_model_shard_cpu_group(sharding_strategy: str, device_mesh: Optional[Tuple] = None):
"""
Initialize CPU process group of model sharding.
"""
global _MODEL_SHARD_CPU_GROUP
assert dist.is_initialized()
world_size = dist.get_world_size()
rank = dist.get_rank()
if device_mesh is not None:
num_shards_per_group = device_mesh[1]
elif "HYBRID" in sharding_strategy:
num_shards_per_group = min(8, world_size)
else:
num_shards_per_group = world_size
num_groups = world_size // num_shards_per_group
for i in range(num_groups):
start_rank = i * num_shards_per_group
end_rank = (i + 1) * num_shards_per_group
ranks = range(start_rank, end_rank)
cpu_group = dist.new_group(ranks, backend="gloo")
if rank in ranks:
_MODEL_SHARD_CPU_GROUP = cpu_group
|