Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,223 Bytes
295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a 295978e e37991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inference codes adapted from [SeedVR]
# https://github.com/ByteDance-Seed/SeedVR/blob/main/projects/inference_seedvr2_7b.py
import math
import os
import gc
import random
import sys
import mediapy
import numpy as np
import torch
import torch.distributed as dist
from omegaconf import DictConfig, ListConfig, OmegaConf
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torchvision.transforms import ToTensor
from tqdm import tqdm
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import (
BackwardPrefetch,
FullyShardedDataParallel,
MixedPrecision,
ShardingStrategy,
)
from common.distributed import (
get_device,
get_global_rank,
get_local_rank,
meta_param_init_fn,
meta_non_persistent_buffer_init_fn,
init_torch,
)
from common.distributed.advanced import (
init_unified_parallel,
get_unified_parallel_world_size,
get_sequence_parallel_rank,
init_model_shard_cpu_group,
)
from common.logger import get_logger
from common.config import create_object
from common.distributed import get_device, get_global_rank
from torchvision.transforms import Compose, Normalize, ToTensor
from humo.models.wan_modules.t5 import T5EncoderModel
from humo.models.wan_modules.vae import WanVAE
from humo.models.utils.utils import tensor_to_video, prepare_json_dataset
from contextlib import contextmanager
import torch.cuda.amp as amp
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from humo.utils.audio_processor_whisper import AudioProcessor
from humo.utils.wav2vec import linear_interpolation_fps
from torchao.quantization import quantize_
import torch._dynamo as dynamo
dynamo.config.capture_scalar_outputs = True
torch.set_float32_matmul_precision("high")
import torch
import torch.nn as nn
import transformer_engine.pytorch as te
image_transform = Compose([
ToTensor(),
Normalize(mean=0.5, std=0.5),
])
SIZE_CONFIGS = {
'720*1280': (720, 1280),
'1280*720': (1280, 720),
'480*832': (480, 832),
'832*480': (832, 480),
'1024*1024': (1024, 1024),
}
def clever_format(nums, format="%.2f"):
from typing import Iterable
if not isinstance(nums, Iterable):
nums = [nums]
clever_nums = []
for num in nums:
if num > 1e12:
clever_nums.append(format % (num / 1e12) + "T")
elif num > 1e9:
clever_nums.append(format % (num / 1e9) + "G")
elif num > 1e6:
clever_nums.append(format % (num / 1e6) + "M")
elif num > 1e3:
clever_nums.append(format % (num / 1e3) + "K")
else:
clever_nums.append(format % num + "B")
clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)
return clever_nums
# --- put near your imports ---
import torch
import torch.nn as nn
import contextlib
import transformer_engine.pytorch as te
# FP8 autocast compatibility for different TE versions
try:
# Preferred modern API
from transformer_engine.pytorch import fp8_autocast
try:
# Newer TE: use recipe-based API
from transformer_engine.common.recipe import DelayedScaling, Format
def make_fp8_ctx(enabled: bool = True):
if not enabled:
return contextlib.nullcontext()
fp8_recipe = DelayedScaling(fp8_format=Format.E4M3) # E4M3 format
return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)
except Exception:
# Very old variant that might still accept fp8_format directly
def make_fp8_ctx(enabled: bool = True):
# If TE doesn't have FP8Format, just no-op
if not hasattr(te, "FP8Format"):
return contextlib.nullcontext()
return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3)
except Exception:
# TE not present or totally incompatible — no-op
def make_fp8_ctx(enabled: bool = True):
return contextlib.nullcontext()
# TE sometimes exposes Linear at different paths; this normalizes it.
try:
TELinear = te.Linear
except AttributeError: # very old layouts
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
# --- near imports ---
import torch
import torch.nn as nn
import transformer_engine.pytorch as te
try:
TELinear = te.Linear
except AttributeError:
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
import torch
import torch.nn as nn
import transformer_engine.pytorch as te
try:
TELinear = te.Linear
except AttributeError:
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
def _default_te_allow(fullname: str, lin: nn.Linear) -> bool:
"""
Allow TE only where it's shape-safe & beneficial.
Skip small/special layers (time/timestep/pos embeds, heads).
Enforce multiples of 16 for in/out features (FP8 kernel friendly).
Also skip very small projections likely to see M=1.
"""
blocked_keywords = (
"time_embedding", "timestep", "time_embed",
"time_projection", "pos_embedding", "pos_embed",
"to_logits", "logits", "final_proj", "proj_out", "output_projection",
)
if any(k in fullname for k in blocked_keywords):
return False
# TE FP8 kernels like K, N divisible by 16
if lin.in_features % 16 != 0 or lin.out_features % 16 != 0:
return False
# Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs
if lin.in_features < 512 or lin.out_features < 512:
return False
# Whitelist: only convert inside transformer blocks if you know their prefix
# This further reduces risk of catching special heads elsewhere.
allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn")
if not any(tok in fullname for tok in allowed_context):
return False
return True
@torch.no_grad()
def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""):
for name, child in list(module.named_children()):
full = f"{_prefix}.{name}" if _prefix else name
convert_linears_to_te_fp8(child, allow_pred, full)
if isinstance(child, nn.Linear):
if allow_pred is not None and not allow_pred(full, child):
continue
te_lin = TELinear(
in_features=child.in_features,
out_features=child.out_features,
bias=(child.bias is not None),
params_dtype=torch.bfloat16,
).to(child.weight.device)
te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype))
if child.bias is not None:
te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype))
setattr(module, name, te_lin)
return module
class Generator():
def __init__(self, config: DictConfig):
self.config = config.copy()
OmegaConf.set_readonly(self.config, True)
self.logger = get_logger(self.__class__.__name__)
# init_torch(cudnn_benchmark=False)
self.configure_models()
def entrypoint(self):
self.inference_loop()
def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
device_mesh = None
fsdp_strategy = ShardingStrategy[sharding_strategy]
if (
fsdp_strategy in [ShardingStrategy._HYBRID_SHARD_ZERO2, ShardingStrategy.HYBRID_SHARD]
and device_mesh_config is not None
):
device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
return device_mesh, fsdp_strategy
def configure_models(self):
self.configure_dit_model(device="cuda")
self.dit.eval().to("cuda")
convert_linears_to_te_fp8(self.dit)
self.dit = torch.compile(self.dit, )
self.configure_vae_model(device="cuda")
if self.config.generation.get('extract_audio_feat', False):
self.configure_wav2vec(device="cpu")
self.configure_text_model(device="cuda")
# # Initialize fsdp.
# self.configure_dit_fsdp_model()
# self.configure_text_fsdp_model()
# quantize_(self.text_encoder, Int8WeightOnlyConfig())
# quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig())
def configure_dit_model(self, device=get_device()):
init_unified_parallel(self.config.dit.sp_size)
self.sp_size = get_unified_parallel_world_size()
# Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet).
init_device = "meta"
with torch.device(init_device):
self.dit = create_object(self.config.dit.model)
self.dit = self.dit.to(dtype=torch.bfloat16) # or: self.dit.bfloat16()
self.logger.info(f"Load DiT model on {init_device}.")
self.dit.eval().requires_grad_(False)
# Load dit checkpoint.
path = self.config.dit.checkpoint_dir
def _cast_state_dict_to_bf16(state):
for k, v in state.items():
if isinstance(v, torch.Tensor) and v.is_floating_point():
state[k] = v.to(dtype=torch.bfloat16, copy=False)
return state
if path.endswith(".pth"):
# Load to CPU first; we’ll move the model later.
state = torch.load(path, map_location="cpu", mmap=True)
state = _cast_state_dict_to_bf16(state)
missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
self.logger.info(
f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}"
)
else:
from safetensors.torch import load_file
import json
def load_custom_sharded_weights(model_dir, base_name):
index_path = f"{model_dir}/{base_name}.safetensors.index.json"
with open(index_path, "r") as f:
index = json.load(f)
weight_map = index["weight_map"]
shard_files = set(weight_map.values())
state_dict = {}
for shard_file in shard_files:
shard_path = f"{model_dir}/{shard_file}"
# Load on CPU, then cast to bf16; we’ll move the whole module later.
shard_state = load_file(shard_path, device="cpu")
shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v)
for k, v in shard_state.items()}
state_dict.update(shard_state)
return state_dict
state = load_custom_sharded_weights(path, 'humo')
self.dit.load_state_dict(state, strict=False, assign=True)
self.dit = meta_non_persistent_buffer_init_fn(self.dit)
target_device = get_device() if device in [get_device(), "cuda"] else device
self.dit.to(target_device) # dtype already bf16
# Print model size.
params = sum(p.numel() for p in self.dit.parameters())
self.logger.info(
f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
)
def configure_vae_model(self, device=get_device()):
self.vae_stride = self.config.vae.vae_stride
self.vae = WanVAE(
vae_pth=self.config.vae.checkpoint,
device=device)
if self.config.generation.height == 480:
self.zero_vae = torch.load(self.config.dit.zero_vae_path)
elif self.config.generation.height == 720:
self.zero_vae = torch.load(self.config.dit.zero_vae_720p_path)
else:
raise ValueError(f"Unsupported height {self.config.generation.height} for zero-vae.")
def configure_wav2vec(self, device=get_device()):
audio_separator_model_file = self.config.audio.vocal_separator
wav2vec_model_path = self.config.audio.wav2vec_model
self.audio_processor = AudioProcessor(
16000,
25,
wav2vec_model_path,
"all",
audio_separator_model_file,
None, # not seperate
os.path.join(self.config.generation.output.dir, "vocals"),
device=device,
)
def configure_text_model(self, device=get_device()):
self.text_encoder = T5EncoderModel(
text_len=self.config.dit.model.text_len,
dtype=torch.bfloat16,
device=device,
checkpoint_path=self.config.text.t5_checkpoint,
tokenizer_path=self.config.text.t5_tokenizer,
)
def configure_dit_fsdp_model(self):
from humo.models.wan_modules.model_humo import WanAttentionBlock
dit_blocks = (WanAttentionBlock,)
# Init model_shard_cpu_group for saving checkpoint with sharded state_dict.
init_model_shard_cpu_group(
self.config.dit.fsdp.sharding_strategy,
self.config.dit.fsdp.get("device_mesh", None),
)
# Assert that dit has wrappable blocks.
assert any(isinstance(m, dit_blocks) for m in self.dit.modules())
# Define wrap policy on all dit blocks.
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
return recurse or isinstance(module, dit_blocks)
# Configure FSDP settings.
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
self.config.dit.fsdp.sharding_strategy,
self.config.dit.fsdp.get("device_mesh", None),
)
settings = dict(
auto_wrap_policy=custom_auto_wrap_policy,
sharding_strategy=fsdp_strategy,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
device_id=get_local_rank(),
use_orig_params=False,
sync_module_states=True,
forward_prefetch=True,
limit_all_gathers=False, # False for ZERO2.
mixed_precision=MixedPrecision(
param_dtype=torch.bfloat16,
reduce_dtype=torch.float32,
buffer_dtype=torch.float32,
),
device_mesh=device_mesh,
param_init_fn=meta_param_init_fn,
)
# Apply FSDP.
self.dit = FullyShardedDataParallel(self.dit, **settings)
# self.dit.to(get_device())
def configure_text_fsdp_model(self):
# If FSDP is not enabled, put text_encoder to GPU and return.
if not self.config.text.fsdp.enabled:
self.text_encoder.to(get_device())
return
# from transformers.models.t5.modeling_t5 import T5Block
from humo.models.wan_modules.t5 import T5SelfAttention
text_blocks = (torch.nn.Embedding, T5SelfAttention)
# text_blocks_names = ("QWenBlock", "QWenModel") # QWen cannot be imported. Use str.
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
return (
recurse
or isinstance(module, text_blocks)
)
# Apply FSDP.
text_encoder_dtype = getattr(torch, self.config.text.dtype)
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
self.config.text.fsdp.sharding_strategy,
self.config.text.fsdp.get("device_mesh", None),
)
self.text_encoder = FullyShardedDataParallel(
module=self.text_encoder,
auto_wrap_policy=custom_auto_wrap_policy,
sharding_strategy=fsdp_strategy,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
device_id=get_local_rank(),
use_orig_params=False,
sync_module_states=False,
forward_prefetch=True,
limit_all_gathers=True,
mixed_precision=MixedPrecision(
param_dtype=text_encoder_dtype,
reduce_dtype=text_encoder_dtype,
buffer_dtype=text_encoder_dtype,
),
device_mesh=device_mesh,
)
self.text_encoder.to(get_device()).requires_grad_(False)
def load_image_latent_ref_id(self, path: str, size, device):
# Load size.
h, w = size[1], size[0]
# Load image.
if len(path) > 1 and not isinstance(path, str):
ref_vae_latents = []
for image_path in path:
with Image.open(image_path) as img:
img = img.convert("RGB")
# Calculate the required size to keep aspect ratio and fill the rest with padding.
img_ratio = img.width / img.height
target_ratio = w / h
if img_ratio > target_ratio: # Image is wider than target
new_width = w
new_height = int(new_width / img_ratio)
else: # Image is taller than target
new_height = h
new_width = int(new_height * img_ratio)
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with the target size and place the resized image in the center
delta_w = w - img.size[0]
delta_h = h - img.size[1]
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
# Transform to tensor and normalize.
transform = Compose(
[
ToTensor(),
Normalize(0.5, 0.5),
]
)
new_img = transform(new_img)
# img_vae_latent = self.vae_encode([new_img.unsqueeze(1)])[0]
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
ref_vae_latents.append(img_vae_latent[0])
return [torch.cat(ref_vae_latents, dim=1)]
else:
if not isinstance(path, str):
path = path[0]
with Image.open(path) as img:
img = img.convert("RGB")
# Calculate the required size to keep aspect ratio and fill the rest with padding.
img_ratio = img.width / img.height
target_ratio = w / h
if img_ratio > target_ratio: # Image is wider than target
new_width = w
new_height = int(new_width / img_ratio)
else: # Image is taller than target
new_height = h
new_width = int(new_height * img_ratio)
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with the target size and place the resized image in the center
delta_w = w - img.size[0]
delta_h = h - img.size[1]
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
# Transform to tensor and normalize.
transform = Compose(
[
ToTensor(),
Normalize(0.5, 0.5),
]
)
new_img = transform(new_img)
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
# Vae encode.
return img_vae_latent
def get_audio_emb_window(self, audio_emb, frame_num, frame0_idx, audio_shift=2):
zero_audio_embed = torch.zeros((audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device)
zero_audio_embed_3 = torch.zeros((3, audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device) # device=audio_emb.device
iter_ = 1 + (frame_num - 1) // 4
audio_emb_wind = []
for lt_i in range(iter_):
if lt_i == 0:
st = frame0_idx + lt_i - 2
ed = frame0_idx + lt_i + 3
wind_feat = torch.stack([
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
for i in range(st, ed)
], dim=0)
wind_feat = torch.cat((zero_audio_embed_3, wind_feat), dim=0)
else:
st = frame0_idx + 1 + 4 * (lt_i - 1) - audio_shift
ed = frame0_idx + 1 + 4 * lt_i + audio_shift
wind_feat = torch.stack([
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
for i in range(st, ed)
], dim=0)
audio_emb_wind.append(wind_feat)
audio_emb_wind = torch.stack(audio_emb_wind, dim=0)
return audio_emb_wind, ed - audio_shift
def audio_emb_enc(self, audio_emb, wav_enc_type="whisper"):
if wav_enc_type == "wav2vec":
feat_merge = audio_emb
elif wav_enc_type == "whisper":
feat0 = linear_interpolation_fps(audio_emb[:, :, 0: 8].mean(dim=2), 50, 25)
feat1 = linear_interpolation_fps(audio_emb[:, :, 8: 16].mean(dim=2), 50, 25)
feat2 = linear_interpolation_fps(audio_emb[:, :, 16: 24].mean(dim=2), 50, 25)
feat3 = linear_interpolation_fps(audio_emb[:, :, 24: 32].mean(dim=2), 50, 25)
feat4 = linear_interpolation_fps(audio_emb[:, :, 32], 50, 25)
feat_merge = torch.stack([feat0, feat1, feat2, feat3, feat4], dim=2)[0]
else:
raise ValueError(f"Unsupported wav_enc_type: {wav_enc_type}")
return feat_merge
def forward_tia(self, latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null):
neg = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null
)[0]
pos_t = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t
)[0]
pos_ta = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta
)[0]
pos_tia = self.dit(
[torch.cat([latent[:,:-latent_ref.shape[1]], latent_ref], dim=1) for latent, latent_ref in zip(latents, latents_ref)], t=timestep, **arg_ta
)[0]
noise_pred = self.config.generation.scale_i * (pos_tia - pos_ta) + \
self.config.generation.scale_a * (pos_ta - pos_t) + \
self.config.generation.scale_t * (pos_t - neg) + \
neg
return noise_pred
def forward_ta(self, latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null):
neg = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null
)[0]
pos_t = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t
)[0]
pos_ta = self.dit(
[torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta
)[0]
noise_pred = self.config.generation.scale_a * (pos_ta - pos_t) + \
self.config.generation.scale_t * (pos_t - neg) + \
neg
return noise_pred
@torch.no_grad()
def inference(self,
input_prompt,
img_path,
audio_path,
size=(1280, 720),
frame_num=81,
shift=5.0,
sample_solver='unipc',
inference_mode='TIA',
sampling_steps=50,
n_prompt="",
seed=-1,
tea_cache_l1_thresh = 0.0,
device = get_device(),
):
# self.vae.model.to(device=device)
if img_path is not None:
latents_ref = self.load_image_latent_ref_id(img_path, size, device)
else:
latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)]
# self.vae.model.to(device="cpu")
latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref]
# audio
if audio_path is not None:
if self.config.generation.extract_audio_feat:
self.audio_processor.whisper.to(device=device)
audio_emb, audio_length = self.audio_processor.preprocess(audio_path)
self.audio_processor.whisper.to(device='cpu')
else:
audio_emb_path = audio_path.replace(".wav", ".pt")
audio_emb = torch.load(audio_emb_path).to(device=device)
audio_emb = self.audio_emb_enc(audio_emb, wav_enc_type="whisper")
self.logger.info("使用预先提取好的音频特征: %s", audio_emb_path)
else:
audio_emb = torch.zeros(frame_num, 5, 1280).to(device)
frame_num = frame_num if frame_num != -1 else audio_length
frame_num = 4 * ((frame_num - 1) // 4) + 1
audio_emb, _ = self.get_audio_emb_window(audio_emb, frame_num, frame0_idx=0)
zero_audio_pad = torch.zeros(latents_ref[0].shape[1], *audio_emb.shape[1:]).to(audio_emb.device)
audio_emb = torch.cat([audio_emb, zero_audio_pad], dim=0)
audio_emb = [audio_emb.to(device)]
audio_emb_neg = [torch.zeros_like(audio_emb[0])]
# preprocess
self.patch_size = self.config.dit.model.patch_size
F = frame_num
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + latents_ref[0].shape[1],
size[1] // self.vae_stride[1],
size[0] // self.vae_stride[2])
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1] / self.sp_size) * self.sp_size
if n_prompt == "":
n_prompt = self.config.generation.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
# self.text_encoder.model.to(device)
context = self.text_encoder([input_prompt], device)
context_null = self.text_encoder([n_prompt], device)
# self.text_encoder.model.cpu()
noise = [
torch.randn(
target_shape[0],
target_shape[1], # - latents_ref[0].shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=device,
generator=seed_g)
]
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.dit, 'no_sync', noop_no_sync)
# evaluation mode
with make_fp8_ctx(True), torch.autocast('cuda', dtype=torch.bfloat16), torch.no_grad(), no_sync():
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=device, shift=shift)
timesteps = sample_scheduler.timesteps
# sample videos
latents = noise
# referene image在下面的输入中手动指定, 不在arg中指定
arg_ta = {'context': context, 'seq_len': seq_len, 'audio': audio_emb}
arg_t = {'context': context, 'seq_len': seq_len, 'audio': audio_emb_neg}
arg_null = {'context': context_null, 'seq_len': seq_len, 'audio': audio_emb_neg}
torch.cuda.empty_cache()
for _, t in enumerate(tqdm(timesteps)):
timestep = [t]
timestep = torch.stack(timestep)
if self.config.generation.mode == "TIA":
noise_pred = self.forward_tia(latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null)
elif self.config.generation.mode == "TA":
noise_pred = self.forward_ta(latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null)
else:
raise ValueError(f"Unsupported generation mode: {self.config.generation.mode}")
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
del timestep
torch.cuda.empty_cache()
x0 = latents
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
# if offload_model:
# self.dit.cpu()
torch.cuda.empty_cache()
# if get_local_rank() == 0:
# self.vae.model.to(device=device)
videos = self.vae.decode(x0)
# self.vae.model.to(device="cpu")
del noise, latents, noise_pred
del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null
del x0, temp_x0
del sample_scheduler
torch.cuda.empty_cache()
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] # if get_local_rank() == 0 else None
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0):
video = self.inference(
prompt,
ref_img_path,
audio_path,
size=SIZE_CONFIGS[f"{width}*{height}"],
frame_num=frames,
shift=self.config.diffusion.timesteps.sampling.shift,
sample_solver='unipc',
sampling_steps=steps,
inference_mode = inference_mode,
tea_cache_l1_thresh = tea_cache_l1_thresh,
seed=seed
)
torch.cuda.empty_cache()
gc.collect()
# Save samples.
if get_sequence_parallel_rank() == 0:
pathname = self.save_sample(
sample=video,
audio_path=audio_path,
output_dir = output_dir,
filename=filename,
)
self.logger.info(f"Finished {filename}, saved to {pathname}.")
del video, prompt
torch.cuda.empty_cache()
gc.collect()
def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str):
gen_config = self.config.generation
# Prepare file path.
extension = ".mp4" if sample.ndim == 4 else ".png"
filename += extension
pathname = os.path.join(output_dir, filename)
# Convert sample.
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).to("cpu", torch.uint8)
sample = rearrange(sample, "c t h w -> t h w c")
# Save file.
if sample.ndim == 4:
if audio_path is not None:
tensor_to_video(
sample.numpy(),
pathname,
audio_path,
fps=gen_config.fps)
else:
mediapy.write_video(
path=pathname,
images=sample.numpy(),
fps=gen_config.fps,
)
else:
raise ValueError
return pathname
def prepare_positive_prompts(self):
pos_prompts = self.config.generation.positive_prompt
if pos_prompts.endswith(".json"):
pos_prompts = prepare_json_dataset(pos_prompts)
else:
raise NotImplementedError
assert isinstance(pos_prompts, ListConfig)
return pos_prompts
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
self.coefficients_dict = {
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
}
if model_id not in self.coefficients_dict:
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
self.coefficients = self.coefficients_dict[model_id]
def check(self, dit, x, t_mod):
modulated_inp = t_mod.clone()
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = self.coefficients
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = x.clone()
return not should_calc
def store(self, hidden_states):
if self.previous_hidden_states is None:
return
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states |