File size: 37,223 Bytes
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
e37991a
 
 
 
 
 
 
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295978e
 
 
 
 
 
 
e37991a
 
 
 
 
295978e
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
e37991a
 
 
 
 
 
 
 
 
295978e
 
e37991a
 
 
 
 
 
 
 
295978e
 
 
 
 
 
e37991a
 
295978e
 
 
e37991a
295978e
 
 
 
 
e37991a
 
 
 
 
 
 
295978e
e37991a
 
 
295978e
 
e37991a
295978e
 
 
 
e37991a
295978e
 
 
 
 
 
 
 
e37991a
 
 
 
295978e
 
e37991a
 
295978e
e37991a
295978e
e37991a
 
 
295978e
 
 
 
 
 
e37991a
 
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295978e
 
 
e37991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
 
e37991a
295978e
 
 
e37991a
295978e
 
 
 
 
e37991a
 
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
e37991a
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
 
295978e
 
e37991a
295978e
e37991a
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
295978e
 
 
 
 
 
 
 
 
 
e37991a
 
 
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Inference codes adapted from [SeedVR]
# https://github.com/ByteDance-Seed/SeedVR/blob/main/projects/inference_seedvr2_7b.py

import math
import os
import gc
import random
import sys
import mediapy
import numpy as np
import torch
import torch.distributed as dist
from omegaconf import DictConfig, ListConfig, OmegaConf
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torchvision.transforms import ToTensor
from tqdm import tqdm
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import (
    BackwardPrefetch,
    FullyShardedDataParallel,
    MixedPrecision,
    ShardingStrategy,
)
from common.distributed import (
    get_device,
    get_global_rank,
    get_local_rank,
    meta_param_init_fn,
    meta_non_persistent_buffer_init_fn,
    init_torch,
)
from common.distributed.advanced import (
    init_unified_parallel,
    get_unified_parallel_world_size,
    get_sequence_parallel_rank,
    init_model_shard_cpu_group,
)
from common.logger import get_logger
from common.config import create_object
from common.distributed import get_device, get_global_rank
from torchvision.transforms import Compose, Normalize, ToTensor
from humo.models.wan_modules.t5 import T5EncoderModel
from humo.models.wan_modules.vae import WanVAE
from humo.models.utils.utils import tensor_to_video, prepare_json_dataset
from contextlib import contextmanager
import torch.cuda.amp as amp
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from humo.utils.audio_processor_whisper import AudioProcessor
from humo.utils.wav2vec import linear_interpolation_fps
from torchao.quantization import quantize_

import torch._dynamo as dynamo
dynamo.config.capture_scalar_outputs = True
torch.set_float32_matmul_precision("high")

import torch
import torch.nn as nn
import transformer_engine.pytorch as te

image_transform = Compose([
    ToTensor(),
    Normalize(mean=0.5, std=0.5),
])

SIZE_CONFIGS = {
    '720*1280': (720, 1280),
    '1280*720': (1280, 720),
    '480*832': (480, 832),
    '832*480': (832, 480),
    '1024*1024': (1024, 1024),
}

def clever_format(nums, format="%.2f"):
    from typing import Iterable
    if not isinstance(nums, Iterable):
        nums = [nums]
    clever_nums = []
    for num in nums:
        if num > 1e12:
            clever_nums.append(format % (num / 1e12) + "T")
        elif num > 1e9:
            clever_nums.append(format % (num / 1e9) + "G")
        elif num > 1e6:
            clever_nums.append(format % (num / 1e6) + "M")
        elif num > 1e3:
            clever_nums.append(format % (num / 1e3) + "K")
        else:
            clever_nums.append(format % num + "B")

    clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)

    return clever_nums


    
# --- put near your imports ---
import torch
import torch.nn as nn
import contextlib
import transformer_engine.pytorch as te

# FP8 autocast compatibility for different TE versions
try:
    # Preferred modern API
    from transformer_engine.pytorch import fp8_autocast
    try:
        # Newer TE: use recipe-based API
        from transformer_engine.common.recipe import DelayedScaling, Format
        def make_fp8_ctx(enabled: bool = True):
            if not enabled:
                return contextlib.nullcontext()
            fp8_recipe = DelayedScaling(fp8_format=Format.E4M3)  # E4M3 format
            return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)
    except Exception:
        # Very old variant that might still accept fp8_format directly
        def make_fp8_ctx(enabled: bool = True):
            # If TE doesn't have FP8Format, just no-op
            if not hasattr(te, "FP8Format"):
                return contextlib.nullcontext()
            return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3)
except Exception:
    # TE not present or totally incompatible — no-op
    def make_fp8_ctx(enabled: bool = True):
        return contextlib.nullcontext()


# TE sometimes exposes Linear at different paths; this normalizes it.
try:
    TELinear = te.Linear
except AttributeError:  # very old layouts
    from transformer_engine.pytorch.modules.linear import Linear as TELinear  # type: ignore

# --- near imports ---
import torch
import torch.nn as nn
import transformer_engine.pytorch as te

try:
    TELinear = te.Linear
except AttributeError:
    from transformer_engine.pytorch.modules.linear import Linear as TELinear  # type: ignore

import torch
import torch.nn as nn
import transformer_engine.pytorch as te

try:
    TELinear = te.Linear
except AttributeError:
    from transformer_engine.pytorch.modules.linear import Linear as TELinear  # type: ignore

def _default_te_allow(fullname: str, lin: nn.Linear) -> bool:
    """

    Allow TE only where it's shape-safe & beneficial.

    Skip small/special layers (time/timestep/pos embeds, heads).

    Enforce multiples of 16 for in/out features (FP8 kernel friendly).

    Also skip very small projections likely to see M=1.

    """
    blocked_keywords = (
        "time_embedding", "timestep", "time_embed",
        "time_projection", "pos_embedding", "pos_embed",
        "to_logits", "logits", "final_proj", "proj_out", "output_projection",
    )
    if any(k in fullname for k in blocked_keywords):
        return False

    # TE FP8 kernels like K, N divisible by 16
    if lin.in_features % 16 != 0 or lin.out_features % 16 != 0:
        return False

    # Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs
    if lin.in_features < 512 or lin.out_features < 512:
        return False

    # Whitelist: only convert inside transformer blocks if you know their prefix
    # This further reduces risk of catching special heads elsewhere.
    allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn")
    if not any(tok in fullname for tok in allowed_context):
        return False

    return True

@torch.no_grad()
def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""):
    for name, child in list(module.named_children()):
        full = f"{_prefix}.{name}" if _prefix else name
        convert_linears_to_te_fp8(child, allow_pred, full)

        if isinstance(child, nn.Linear):
            if allow_pred is not None and not allow_pred(full, child):
                continue

            te_lin = TELinear(
                in_features=child.in_features,
                out_features=child.out_features,
                bias=(child.bias is not None),
                params_dtype=torch.bfloat16,
            ).to(child.weight.device)

            te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype))
            if child.bias is not None:
                te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype))

            setattr(module, name, te_lin)
    return module

class Generator():
    def __init__(self, config: DictConfig):
        self.config = config.copy()
        OmegaConf.set_readonly(self.config, True)
        self.logger = get_logger(self.__class__.__name__)
        
        # init_torch(cudnn_benchmark=False)
        self.configure_models()

    def entrypoint(self):
        
        self.inference_loop()
    
    def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
        device_mesh = None
        fsdp_strategy = ShardingStrategy[sharding_strategy]
        if (
            fsdp_strategy in [ShardingStrategy._HYBRID_SHARD_ZERO2, ShardingStrategy.HYBRID_SHARD]
            and device_mesh_config is not None
        ):
            device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
        return device_mesh, fsdp_strategy

        
    def configure_models(self):
        self.configure_dit_model(device="cuda")

        self.dit.eval().to("cuda")
        convert_linears_to_te_fp8(self.dit)

        self.dit = torch.compile(self.dit, )


        self.configure_vae_model(device="cuda")
        if self.config.generation.get('extract_audio_feat', False):
            self.configure_wav2vec(device="cpu")
        self.configure_text_model(device="cuda")

        # # Initialize fsdp.
        # self.configure_dit_fsdp_model()
        # self.configure_text_fsdp_model()

        # quantize_(self.text_encoder, Int8WeightOnlyConfig())
        # quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig())

    
    def configure_dit_model(self, device=get_device()):

        init_unified_parallel(self.config.dit.sp_size)
        self.sp_size = get_unified_parallel_world_size()

        # Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet).
        init_device = "meta"
        with torch.device(init_device):
            self.dit = create_object(self.config.dit.model)
            self.dit = self.dit.to(dtype=torch.bfloat16)  # or: self.dit.bfloat16()
        self.logger.info(f"Load DiT model on {init_device}.")
        self.dit.eval().requires_grad_(False)

        # Load dit checkpoint.
        path = self.config.dit.checkpoint_dir

        def _cast_state_dict_to_bf16(state):
            for k, v in state.items():
                if isinstance(v, torch.Tensor) and v.is_floating_point():
                    state[k] = v.to(dtype=torch.bfloat16, copy=False)
            return state

        if path.endswith(".pth"):
            # Load to CPU first; we’ll move the model later.
            state = torch.load(path, map_location="cpu", mmap=True)
            state = _cast_state_dict_to_bf16(state)
            missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
            self.logger.info(
                f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}"
            )
        else:
            from safetensors.torch import load_file
            import json
            def load_custom_sharded_weights(model_dir, base_name):
                index_path = f"{model_dir}/{base_name}.safetensors.index.json"
                with open(index_path, "r") as f:
                    index = json.load(f)
                weight_map = index["weight_map"]
                shard_files = set(weight_map.values())
                state_dict = {}
                for shard_file in shard_files:
                    shard_path = f"{model_dir}/{shard_file}"
                    # Load on CPU, then cast to bf16; we’ll move the whole module later.
                    shard_state = load_file(shard_path, device="cpu")
                    shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v)
                                for k, v in shard_state.items()}
                    state_dict.update(shard_state)
                return state_dict

            state = load_custom_sharded_weights(path, 'humo')
            self.dit.load_state_dict(state, strict=False, assign=True)

        self.dit = meta_non_persistent_buffer_init_fn(self.dit)

        target_device = get_device() if device in [get_device(), "cuda"] else device
        self.dit.to(target_device)  # dtype already bf16

        # Print model size.
        params = sum(p.numel() for p in self.dit.parameters())
        self.logger.info(
            f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
        )

        
    def configure_vae_model(self, device=get_device()):
        self.vae_stride = self.config.vae.vae_stride
        self.vae = WanVAE(
            vae_pth=self.config.vae.checkpoint,
            device=device)
        
        if self.config.generation.height == 480:
            self.zero_vae = torch.load(self.config.dit.zero_vae_path)
        elif self.config.generation.height == 720:
            self.zero_vae = torch.load(self.config.dit.zero_vae_720p_path)
        else:
            raise ValueError(f"Unsupported height {self.config.generation.height} for zero-vae.")
    
    def configure_wav2vec(self, device=get_device()):
        audio_separator_model_file = self.config.audio.vocal_separator
        wav2vec_model_path = self.config.audio.wav2vec_model

        self.audio_processor = AudioProcessor(
            16000,
            25,
            wav2vec_model_path,
            "all",
            audio_separator_model_file,
            None,  # not seperate
            os.path.join(self.config.generation.output.dir, "vocals"),
            device=device,
        )

    def configure_text_model(self, device=get_device()):
        self.text_encoder = T5EncoderModel(
            text_len=self.config.dit.model.text_len,
            dtype=torch.bfloat16,
            device=device,
            checkpoint_path=self.config.text.t5_checkpoint,
            tokenizer_path=self.config.text.t5_tokenizer,
            )

    
    def configure_dit_fsdp_model(self):
        from humo.models.wan_modules.model_humo import WanAttentionBlock

        dit_blocks = (WanAttentionBlock,)

        # Init model_shard_cpu_group for saving checkpoint with sharded state_dict.
        init_model_shard_cpu_group(
            self.config.dit.fsdp.sharding_strategy,
            self.config.dit.fsdp.get("device_mesh", None),
        )

        # Assert that dit has wrappable blocks.
        assert any(isinstance(m, dit_blocks) for m in self.dit.modules())

        # Define wrap policy on all dit blocks.
        def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
            return recurse or isinstance(module, dit_blocks)

        # Configure FSDP settings.
        device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
            self.config.dit.fsdp.sharding_strategy,
            self.config.dit.fsdp.get("device_mesh", None),
        )
        settings = dict(
            auto_wrap_policy=custom_auto_wrap_policy,
            sharding_strategy=fsdp_strategy,
            backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
            device_id=get_local_rank(),
            use_orig_params=False,
            sync_module_states=True,
            forward_prefetch=True,
            limit_all_gathers=False,  # False for ZERO2.
            mixed_precision=MixedPrecision(
                param_dtype=torch.bfloat16,
                reduce_dtype=torch.float32,
                buffer_dtype=torch.float32,
            ),
            device_mesh=device_mesh,
            param_init_fn=meta_param_init_fn,
        )

        # Apply FSDP.
        self.dit = FullyShardedDataParallel(self.dit, **settings)
        # self.dit.to(get_device())


    def configure_text_fsdp_model(self):
        # If FSDP is not enabled, put text_encoder to GPU and return.
        if not self.config.text.fsdp.enabled:
            self.text_encoder.to(get_device())
            return

        # from transformers.models.t5.modeling_t5 import T5Block
        from humo.models.wan_modules.t5 import T5SelfAttention

        text_blocks = (torch.nn.Embedding, T5SelfAttention)
        # text_blocks_names = ("QWenBlock", "QWenModel")  # QWen cannot be imported. Use str.

        def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
            return (
                recurse
                or isinstance(module, text_blocks)
            )

        # Apply FSDP.
        text_encoder_dtype = getattr(torch, self.config.text.dtype)
        device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
            self.config.text.fsdp.sharding_strategy,
            self.config.text.fsdp.get("device_mesh", None),
        )
        self.text_encoder = FullyShardedDataParallel(
            module=self.text_encoder,
            auto_wrap_policy=custom_auto_wrap_policy,
            sharding_strategy=fsdp_strategy,
            backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
            device_id=get_local_rank(),
            use_orig_params=False,
            sync_module_states=False,
            forward_prefetch=True,
            limit_all_gathers=True,
            mixed_precision=MixedPrecision(
                param_dtype=text_encoder_dtype,
                reduce_dtype=text_encoder_dtype,
                buffer_dtype=text_encoder_dtype,
            ),
            device_mesh=device_mesh,
        )
        self.text_encoder.to(get_device()).requires_grad_(False)


    def load_image_latent_ref_id(self, path: str, size, device):
        # Load size.
        h, w = size[1], size[0]

        # Load image.
        if len(path) > 1 and not isinstance(path, str):
            ref_vae_latents = []
            for image_path in path:
                with Image.open(image_path) as img:
                    img = img.convert("RGB")

                    # Calculate the required size to keep aspect ratio and fill the rest with padding.
                    img_ratio = img.width / img.height
                    target_ratio = w / h
                    
                    if img_ratio > target_ratio:  # Image is wider than target
                        new_width = w
                        new_height = int(new_width / img_ratio)
                    else:  # Image is taller than target
                        new_height = h
                        new_width = int(new_height * img_ratio)
                    
                    # img = img.resize((new_width, new_height), Image.ANTIALIAS)
                    img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)

                    # Create a new image with the target size and place the resized image in the center
                    delta_w = w - img.size[0]
                    delta_h = h - img.size[1]
                    padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
                    new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))

                    # Transform to tensor and normalize.
                    transform = Compose(
                        [
                            ToTensor(),
                            Normalize(0.5, 0.5),
                        ]
                    )
                    new_img = transform(new_img)
                    # img_vae_latent = self.vae_encode([new_img.unsqueeze(1)])[0]
                    img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
                    ref_vae_latents.append(img_vae_latent[0])

            return [torch.cat(ref_vae_latents, dim=1)]
        else:
            if not isinstance(path, str):
                path = path[0]
            with Image.open(path) as img:
                img = img.convert("RGB")

                # Calculate the required size to keep aspect ratio and fill the rest with padding.
                img_ratio = img.width / img.height
                target_ratio = w / h
                
                if img_ratio > target_ratio:  # Image is wider than target
                    new_width = w
                    new_height = int(new_width / img_ratio)
                else:  # Image is taller than target
                    new_height = h
                    new_width = int(new_height * img_ratio)
                
                # img = img.resize((new_width, new_height), Image.ANTIALIAS)
                img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)

                # Create a new image with the target size and place the resized image in the center
                delta_w = w - img.size[0]
                delta_h = h - img.size[1]
                padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
                new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))

                # Transform to tensor and normalize.
                transform = Compose(
                    [
                        ToTensor(),
                        Normalize(0.5, 0.5),
                    ]
                )
                new_img = transform(new_img)
                img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)

            # Vae encode.
            return img_vae_latent
    
    def get_audio_emb_window(self, audio_emb, frame_num, frame0_idx, audio_shift=2):
        zero_audio_embed = torch.zeros((audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device)
        zero_audio_embed_3 = torch.zeros((3, audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device)  # device=audio_emb.device
        iter_ = 1 + (frame_num - 1) // 4
        audio_emb_wind = []
        for lt_i in range(iter_):
            if lt_i == 0:
                st = frame0_idx + lt_i - 2
                ed = frame0_idx + lt_i + 3
                wind_feat = torch.stack([
                    audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
                    for i in range(st, ed)
                ], dim=0)
                wind_feat = torch.cat((zero_audio_embed_3, wind_feat), dim=0)
            else:
                st = frame0_idx + 1 + 4 * (lt_i - 1) - audio_shift
                ed = frame0_idx + 1 + 4 * lt_i + audio_shift
                wind_feat = torch.stack([
                    audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
                    for i in range(st, ed)
                ], dim=0)
            audio_emb_wind.append(wind_feat)
        audio_emb_wind = torch.stack(audio_emb_wind, dim=0)

        return audio_emb_wind, ed - audio_shift
    
    def audio_emb_enc(self, audio_emb, wav_enc_type="whisper"):
        if wav_enc_type == "wav2vec":
            feat_merge = audio_emb
        elif wav_enc_type == "whisper":
            feat0 = linear_interpolation_fps(audio_emb[:, :, 0: 8].mean(dim=2), 50, 25)
            feat1 = linear_interpolation_fps(audio_emb[:, :, 8: 16].mean(dim=2), 50, 25)
            feat2 = linear_interpolation_fps(audio_emb[:, :, 16: 24].mean(dim=2), 50, 25)
            feat3 = linear_interpolation_fps(audio_emb[:, :, 24: 32].mean(dim=2), 50, 25)
            feat4 = linear_interpolation_fps(audio_emb[:, :, 32], 50, 25)
            feat_merge = torch.stack([feat0, feat1, feat2, feat3, feat4], dim=2)[0]
        else:
            raise ValueError(f"Unsupported wav_enc_type: {wav_enc_type}")
        
        return feat_merge
    
    def forward_tia(self, latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null):
        neg = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null
            )[0]
        
        pos_t = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t
            )[0]
        pos_ta = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta
            )[0]
        pos_tia = self.dit(
            [torch.cat([latent[:,:-latent_ref.shape[1]], latent_ref], dim=1) for latent, latent_ref in zip(latents, latents_ref)], t=timestep, **arg_ta
            )[0]
        
        noise_pred = self.config.generation.scale_i * (pos_tia - pos_ta) + \
                    self.config.generation.scale_a * (pos_ta - pos_t) + \
                    self.config.generation.scale_t * (pos_t - neg) + \
                    neg
        
        return noise_pred
    
    def forward_ta(self, latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null):
        neg = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null
            )[0]
        
        pos_t = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t
            )[0]
        pos_ta = self.dit(
            [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta
            )[0]
        
        noise_pred = self.config.generation.scale_a * (pos_ta - pos_t) + \
                    self.config.generation.scale_t * (pos_t - neg) + \
                    neg
        
        return noise_pred
                    
    @torch.no_grad()
    def inference(self,

                 input_prompt,

                 img_path,

                 audio_path,

                 size=(1280, 720),

                 frame_num=81,

                 shift=5.0,

                 sample_solver='unipc',

                 inference_mode='TIA',

                 sampling_steps=50,

                 n_prompt="",

                 seed=-1,

                 tea_cache_l1_thresh = 0.0,

                 device = get_device(),

        ):

        # self.vae.model.to(device=device)
        if img_path is not None:
            latents_ref = self.load_image_latent_ref_id(img_path, size, device)
        else:
            latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)]
            
        # self.vae.model.to(device="cpu")

        latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref]
        
        # audio
        if audio_path is not None:
            if self.config.generation.extract_audio_feat:
                self.audio_processor.whisper.to(device=device)
                audio_emb, audio_length = self.audio_processor.preprocess(audio_path)
                self.audio_processor.whisper.to(device='cpu')
            else:
                audio_emb_path = audio_path.replace(".wav", ".pt")
                audio_emb = torch.load(audio_emb_path).to(device=device)
                audio_emb = self.audio_emb_enc(audio_emb, wav_enc_type="whisper")
                self.logger.info("使用预先提取好的音频特征: %s", audio_emb_path)
        else:
            audio_emb = torch.zeros(frame_num, 5, 1280).to(device)
            
        frame_num = frame_num if frame_num != -1 else audio_length
        frame_num = 4 * ((frame_num - 1) // 4) + 1
        audio_emb, _ = self.get_audio_emb_window(audio_emb, frame_num, frame0_idx=0)
        zero_audio_pad = torch.zeros(latents_ref[0].shape[1], *audio_emb.shape[1:]).to(audio_emb.device)
        audio_emb = torch.cat([audio_emb, zero_audio_pad], dim=0)
        audio_emb = [audio_emb.to(device)]
        audio_emb_neg = [torch.zeros_like(audio_emb[0])]
        
        # preprocess
        self.patch_size = self.config.dit.model.patch_size
        F = frame_num
        target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + latents_ref[0].shape[1],
                        size[1] // self.vae_stride[1],
                        size[0] // self.vae_stride[2])

        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
                            (self.patch_size[1] * self.patch_size[2]) *
                            target_shape[1] / self.sp_size) * self.sp_size

        if n_prompt == "":
            n_prompt = self.config.generation.sample_neg_prompt
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
        seed_g = torch.Generator(device=device)
        seed_g.manual_seed(seed)

        # self.text_encoder.model.to(device)
        context = self.text_encoder([input_prompt], device)
        context_null = self.text_encoder([n_prompt], device)
        # self.text_encoder.model.cpu()

        noise = [
            torch.randn(
                target_shape[0],
                target_shape[1], # - latents_ref[0].shape[1],
                target_shape[2],
                target_shape[3],
                dtype=torch.float32,
                device=device,
                generator=seed_g)
        ]

        @contextmanager
        def noop_no_sync():
            yield

        no_sync = getattr(self.dit, 'no_sync', noop_no_sync)

        # evaluation mode
        with make_fp8_ctx(True), torch.autocast('cuda', dtype=torch.bfloat16), torch.no_grad(), no_sync():

            if sample_solver == 'unipc':
                sample_scheduler = FlowUniPCMultistepScheduler(
                    num_train_timesteps=1000,
                    shift=1,
                    use_dynamic_shifting=False)
                sample_scheduler.set_timesteps(
                    sampling_steps, device=device, shift=shift)
                timesteps = sample_scheduler.timesteps

            # sample videos
            latents = noise

            # referene image在下面的输入中手动指定, 不在arg中指定
            arg_ta = {'context': context, 'seq_len': seq_len, 'audio': audio_emb}
            arg_t = {'context': context, 'seq_len': seq_len, 'audio': audio_emb_neg}
            arg_null = {'context': context_null, 'seq_len': seq_len, 'audio': audio_emb_neg}
            
            torch.cuda.empty_cache()

            for _, t in enumerate(tqdm(timesteps)):
                timestep = [t]
                timestep = torch.stack(timestep)

                if self.config.generation.mode == "TIA":
                    noise_pred = self.forward_tia(latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null)
                elif self.config.generation.mode == "TA":
                    noise_pred = self.forward_ta(latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null)
                else:
                    raise ValueError(f"Unsupported generation mode: {self.config.generation.mode}")

                temp_x0 = sample_scheduler.step(
                    noise_pred.unsqueeze(0),
                    t,
                    latents[0].unsqueeze(0),
                    return_dict=False,
                    generator=seed_g)[0]
                latents = [temp_x0.squeeze(0)]

                del timestep
                torch.cuda.empty_cache()

            x0 = latents
            x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]

            # if offload_model:
            # self.dit.cpu()

            torch.cuda.empty_cache()
            # if get_local_rank() == 0:
            # self.vae.model.to(device=device)
            videos = self.vae.decode(x0)
            # self.vae.model.to(device="cpu")

        del noise, latents, noise_pred
        del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null
        del x0, temp_x0
        del sample_scheduler
        torch.cuda.empty_cache()
        gc.collect()
        torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos[0] # if get_local_rank() == 0 else None


    def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0):

        video = self.inference(
            prompt,
            ref_img_path,
            audio_path,
            size=SIZE_CONFIGS[f"{width}*{height}"],
            frame_num=frames,
            shift=self.config.diffusion.timesteps.sampling.shift,
            sample_solver='unipc',
            sampling_steps=steps,
            inference_mode = inference_mode,
            tea_cache_l1_thresh = tea_cache_l1_thresh,
            seed=seed
        )

        torch.cuda.empty_cache()
        gc.collect()
        
        # Save samples.
        if get_sequence_parallel_rank() == 0:
            pathname = self.save_sample(
                sample=video,
                audio_path=audio_path,
                output_dir = output_dir,
                filename=filename,
            )
            self.logger.info(f"Finished {filename}, saved to {pathname}.")
        
        del video, prompt
        torch.cuda.empty_cache()
        gc.collect()
            

    def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str):
        gen_config = self.config.generation
        # Prepare file path.
        extension = ".mp4" if sample.ndim == 4 else ".png"
        filename += extension
        pathname = os.path.join(output_dir, filename)
        # Convert sample.
        sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).to("cpu", torch.uint8)
        sample = rearrange(sample, "c t h w -> t h w c")
        # Save file.
        if sample.ndim == 4:
            if audio_path is not None:
                tensor_to_video(
                    sample.numpy(),
                    pathname,
                    audio_path,
                    fps=gen_config.fps)
            else:
                mediapy.write_video(
                path=pathname,
                images=sample.numpy(),
                fps=gen_config.fps,
            )
        else:
            raise ValueError
        return pathname
    

    def prepare_positive_prompts(self):
        pos_prompts = self.config.generation.positive_prompt
        if pos_prompts.endswith(".json"):
            pos_prompts = prepare_json_dataset(pos_prompts)
        else:
            raise NotImplementedError
        assert isinstance(pos_prompts, ListConfig)

        return pos_prompts
    
class TeaCache:
    def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
        self.num_inference_steps = num_inference_steps
        self.step = 0
        self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = None
        self.rel_l1_thresh = rel_l1_thresh
        self.previous_residual = None
        self.previous_hidden_states = None
        
        self.coefficients_dict = {
            "Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
            "Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
            "Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04,  1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
            "Wan2.1-I2V-14B-720P": [ 8.10705460e+03,  2.13393892e+03, -3.72934672e+02,  1.66203073e+01, -4.17769401e-02],
        }
        if model_id not in self.coefficients_dict:
            supported_model_ids = ", ".join([i for i in self.coefficients_dict])
            raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
        self.coefficients = self.coefficients_dict[model_id]

    def check(self, dit, x, t_mod):
        modulated_inp = t_mod.clone()
        if self.step == 0 or self.step == self.num_inference_steps - 1:
            should_calc = True
            self.accumulated_rel_l1_distance = 0
        else:
            coefficients = self.coefficients
            rescale_func = np.poly1d(coefficients)
            self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
            if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
                should_calc = False
            else:
                should_calc = True
                self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = modulated_inp
        self.step += 1
        if self.step == self.num_inference_steps:
            self.step = 0
        if should_calc:
            self.previous_hidden_states = x.clone()
        return not should_calc

    def store(self, hidden_states):
        if self.previous_hidden_states is None:
            return
        self.previous_residual = hidden_states - self.previous_hidden_states
        self.previous_hidden_states = None

    def update(self, hidden_states):
        hidden_states = hidden_states + self.previous_residual
        return hidden_states