File size: 8,576 Bytes
295978e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import warnings
import torch
from typing import Optional, Tuple

try:
    import flash_attn_interface
    FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_3_AVAILABLE = False

try:
    import flash_attn
    FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_2_AVAILABLE = False


__all__ = [
    'flash_attention',
    'attention',
]


# ---------------------------
# Custom op + fake kernel
# ---------------------------
from typing import Optional, Sequence  # <- add Sequence

# ... imports unchanged ...
from typing import Optional, Sequence

@torch.library.custom_op("wan::flash_attention", mutates_args=())
def _wan_flash_attention_op(

    q: torch.Tensor,

    k: torch.Tensor,

    v: torch.Tensor,

    q_lens: Optional[torch.Tensor] = None,

    k_lens: Optional[torch.Tensor] = None,

    dropout_p: float = 0.0,

    softmax_scale: Optional[float] = None,

    q_scale: Optional[float] = None,

    causal: bool = False,

    # IMPORTANT: schema-friendly default (None), not a tuple

    window_size: Optional[Sequence[int]] = None,

    deterministic: bool = False,

    dtype: torch.dtype = torch.bfloat16,

    version: Optional[int] = None,

) -> torch.Tensor:
    half_dtypes = (torch.float16, torch.bfloat16)
    assert dtype in half_dtypes
    assert q.size(-1) <= 256

    # normalize window_size to a 2-tuple for FA2 API
    if window_size is None:
        ws = (-1, -1)
    else:
        ws = tuple(window_size)
        if len(ws) != 2:
            raise ValueError(f"window_size must have length 2; got {window_size!r}")

    b, lq, nheads = q.shape[0], q.shape[1], q.shape[2]
    lk = k.shape[1]
    out_dtype = q.dtype

    def half(x: torch.Tensor) -> torch.Tensor:
        return x if x.dtype in half_dtypes else x.to(dtype)

    # --- preprocess (unchanged) ---
    if q_lens is None:
        q_flat = half(q.flatten(0, 1))
        q_lens = torch.tensor([lq] * b, dtype=torch.int32)
    else:
        q_flat = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))

    if k_lens is None:
        k_flat = half(k.flatten(0, 1))
        v_flat = half(v.flatten(0, 1))
        k_lens = torch.tensor([lk] * b, dtype=torch.int32)
    else:
        k_flat = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
        v_flat = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))

    q_flat = q_flat.to(v_flat.dtype); k_flat = k_flat.to(v_flat.dtype)
    if q_scale is not None:
        q_flat = q_flat * q_scale

    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
        warnings.warn('Flash attention 3 is not available, use flash attention 2 instead.')

    if FLASH_ATTN_3_AVAILABLE:
        ret = flash_attn_interface.flash_attn_varlen_func(
            q=q_flat,
            k=k_flat,
            v=v_flat,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(k_flat.device, non_blocking=True),
            seqused_q=None,
            seqused_k=None,
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            softmax_scale=softmax_scale,
            causal=causal,
            deterministic=deterministic,
        )
        out0 = ret[0] if isinstance(ret, (tuple, list)) else ret
        total_q = b * lq
        if out0.dim() != 3:
            raise RuntimeError(f"Unexpected FA3 output rank {out0.dim()} shape={tuple(out0.shape)}")
        if out0.shape[0] == total_q:
            out_flat = out0
        elif out0.shape[0] == nheads and out0.shape[1] == total_q:
            out_flat = out0.transpose(0, 1).contiguous()
        else:
            raise RuntimeError(f"Unexpected FA3 output shape {tuple(out0.shape)}")
        out = out_flat.unflatten(0, (b, lq))

    elif FLASH_ATTN_2_AVAILABLE:
        out = flash_attn.flash_attn_varlen_func(
            q=q_flat,
            k=k_flat,
            v=v_flat,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True),
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            causal=causal,
            window_size=ws,                 # <- pass 2-tuple
            deterministic=deterministic,
        ).unflatten(0, (b, lq))
    else:
        q_s = q.transpose(1, 2).to(dtype)
        k_s = k.transpose(1, 2).to(dtype)
        v_s = v.transpose(1, 2).to(dtype)
        out = torch.nn.functional.scaled_dot_product_attention(
            q_s, k_s, v_s, attn_mask=None, is_causal=causal, dropout_p=dropout_p
        ).transpose(1, 2).contiguous()

    return out.to(out_dtype)

@_wan_flash_attention_op.register_fake
def _wan_flash_attention_op_fake(

    q,

    k,

    v,

    q_lens=None,

    k_lens=None,

    dropout_p: float = 0.0,

    softmax_scale=None,

    q_scale=None,

    causal: bool = False,

    window_size: Optional[Sequence[int]] = None,

    deterministic: bool = False,

    dtype: torch.dtype = torch.bfloat16,

    version: Optional[int] = None,

):
    # Match output shape: (B, Lq, Nq, Dh_v) and keep the SAME fake device as `q`
    B, Lq, Nq, _ = q.shape
    Dh_v = v.shape[-1]
    return q.new_empty((B, Lq, Nq, Dh_v), dtype=q.dtype)



# ---------------------------
# Public API (unchanged signature)
# ---------------------------
def flash_attention(

    q,

    k,

    v,

    q_lens=None,

    k_lens=None,

    dropout_p=0.,

    softmax_scale=None,

    q_scale=None,

    causal=False,

    window_size=(-1, -1),

    deterministic=False,

    dtype=torch.bfloat16,

    version=None,

):
    """

    q:              [B, Lq, Nq, C1].

    k:              [B, Lk, Nk, C1].

    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.

    q_lens:         [B].

    k_lens:         [B].

    dropout_p:      float. Dropout probability.

    softmax_scale:  float. The scaling of QK^T before applying softmax.

    causal:         bool. Whether to apply causal attention mask.

    window_size:    (left right). If not (-1, -1), apply sliding window local attention.

    deterministic:  bool. If True, slightly slower and uses more memory.

    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.

    """
    # Simply delegate to the custom op so Dynamo/AOT treats it as a single node;
    # our eager kernel inside _wan_flash_attention_op keeps the original behavior.
    return _wan_flash_attention_op(
        q, k, v,
        q_lens=q_lens,
        k_lens=k_lens,
        dropout_p=dropout_p,
        softmax_scale=softmax_scale,
        q_scale=q_scale,
        causal=causal,
        window_size=window_size,
        deterministic=deterministic,
        dtype=dtype,
        version=version,
    )


def attention(

    q,

    k,

    v,

    q_lens=None,

    k_lens=None,

    dropout_p=0.,

    softmax_scale=None,

    q_scale=None,

    causal=False,

    window_size=(-1, -1),

    deterministic=False,

    dtype=torch.bfloat16,

    fa_version=None,

):
    if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
        return flash_attention(
            q=q,
            k=k,
            v=v,
            q_lens=q_lens,
            k_lens=k_lens,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            q_scale=q_scale,
            causal=causal,
            window_size=window_size,
            deterministic=deterministic,
            dtype=dtype,
            version=fa_version,
        )
    else:
        if q_lens is not None or k_lens is not None:
            warnings.warn(
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
            )
        q_ = q.transpose(1, 2).to(dtype)
        k_ = k.transpose(1, 2).to(dtype)
        v_ = v.transpose(1, 2).to(dtype)
        out = torch.nn.functional.scaled_dot_product_attention(
            q_, k_, v_, attn_mask=None, is_causal=causal, dropout_p=dropout_p
        )
        return out.transpose(1, 2).contiguous()