Spaces:
Running
on
Zero
Running
on
Zero
Update humo/generate.py
Browse files- humo/generate.py +973 -983
humo/generate.py
CHANGED
|
@@ -1,984 +1,974 @@
|
|
| 1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 3 |
-
# you may not use this file except in compliance with the License.
|
| 4 |
-
# You may obtain a copy of the License at
|
| 5 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 6 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 7 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 8 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 9 |
-
# See the License for the specific language governing permissions and
|
| 10 |
-
# limitations under the License.
|
| 11 |
-
|
| 12 |
-
# Inference codes adapted from [SeedVR]
|
| 13 |
-
# https://github.com/ByteDance-Seed/SeedVR/blob/main/projects/inference_seedvr2_7b.py
|
| 14 |
-
|
| 15 |
-
import math
|
| 16 |
-
import os
|
| 17 |
-
import gc
|
| 18 |
-
import random
|
| 19 |
-
import sys
|
| 20 |
-
import mediapy
|
| 21 |
-
import numpy as np
|
| 22 |
-
import torch
|
| 23 |
-
import torch.distributed as dist
|
| 24 |
-
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 25 |
-
from einops import rearrange
|
| 26 |
-
from omegaconf import OmegaConf
|
| 27 |
-
from PIL import Image, ImageOps
|
| 28 |
-
from torchvision.transforms import ToTensor
|
| 29 |
-
from tqdm import tqdm
|
| 30 |
-
from torch.distributed.device_mesh import init_device_mesh
|
| 31 |
-
from torch.distributed.fsdp import (
|
| 32 |
-
BackwardPrefetch,
|
| 33 |
-
FullyShardedDataParallel,
|
| 34 |
-
MixedPrecision,
|
| 35 |
-
ShardingStrategy,
|
| 36 |
-
)
|
| 37 |
-
from common.distributed import (
|
| 38 |
-
get_device,
|
| 39 |
-
get_global_rank,
|
| 40 |
-
get_local_rank,
|
| 41 |
-
meta_param_init_fn,
|
| 42 |
-
meta_non_persistent_buffer_init_fn,
|
| 43 |
-
init_torch,
|
| 44 |
-
)
|
| 45 |
-
from common.distributed.advanced import (
|
| 46 |
-
init_unified_parallel,
|
| 47 |
-
get_unified_parallel_world_size,
|
| 48 |
-
get_sequence_parallel_rank,
|
| 49 |
-
init_model_shard_cpu_group,
|
| 50 |
-
)
|
| 51 |
-
from common.logger import get_logger
|
| 52 |
-
from common.config import create_object
|
| 53 |
-
from common.distributed import get_device, get_global_rank
|
| 54 |
-
from torchvision.transforms import Compose, Normalize, ToTensor
|
| 55 |
-
from humo.models.wan_modules.t5 import T5EncoderModel
|
| 56 |
-
from humo.models.wan_modules.vae import WanVAE
|
| 57 |
-
from humo.models.utils.utils import tensor_to_video, prepare_json_dataset
|
| 58 |
-
from contextlib import contextmanager
|
| 59 |
-
import torch.cuda.amp as amp
|
| 60 |
-
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
| 61 |
-
from humo.utils.audio_processor_whisper import AudioProcessor
|
| 62 |
-
from humo.utils.wav2vec import linear_interpolation_fps
|
| 63 |
-
from torchao.quantization import quantize_
|
| 64 |
-
|
| 65 |
-
import torch._dynamo as dynamo
|
| 66 |
-
dynamo.config.capture_scalar_outputs = True
|
| 67 |
-
torch.set_float32_matmul_precision("high")
|
| 68 |
-
|
| 69 |
-
import torch
|
| 70 |
-
import torch.nn as nn
|
| 71 |
-
import transformer_engine.pytorch as te
|
| 72 |
-
|
| 73 |
-
image_transform = Compose([
|
| 74 |
-
ToTensor(),
|
| 75 |
-
Normalize(mean=0.5, std=0.5),
|
| 76 |
-
])
|
| 77 |
-
|
| 78 |
-
SIZE_CONFIGS = {
|
| 79 |
-
'720*1280': (720, 1280),
|
| 80 |
-
'1280*720': (1280, 720),
|
| 81 |
-
'480*832': (480, 832),
|
| 82 |
-
'832*480': (832, 480),
|
| 83 |
-
'1024*1024': (1024, 1024),
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
def clever_format(nums, format="%.2f"):
|
| 87 |
-
from typing import Iterable
|
| 88 |
-
if not isinstance(nums, Iterable):
|
| 89 |
-
nums = [nums]
|
| 90 |
-
clever_nums = []
|
| 91 |
-
for num in nums:
|
| 92 |
-
if num > 1e12:
|
| 93 |
-
clever_nums.append(format % (num / 1e12) + "T")
|
| 94 |
-
elif num > 1e9:
|
| 95 |
-
clever_nums.append(format % (num / 1e9) + "G")
|
| 96 |
-
elif num > 1e6:
|
| 97 |
-
clever_nums.append(format % (num / 1e6) + "M")
|
| 98 |
-
elif num > 1e3:
|
| 99 |
-
clever_nums.append(format % (num / 1e3) + "K")
|
| 100 |
-
else:
|
| 101 |
-
clever_nums.append(format % num + "B")
|
| 102 |
-
|
| 103 |
-
clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)
|
| 104 |
-
|
| 105 |
-
return clever_nums
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# --- put near your imports ---
|
| 110 |
-
import torch
|
| 111 |
-
import torch.nn as nn
|
| 112 |
-
import contextlib
|
| 113 |
-
import transformer_engine.pytorch as te
|
| 114 |
-
|
| 115 |
-
# FP8 autocast compatibility for different TE versions
|
| 116 |
-
try:
|
| 117 |
-
# Preferred modern API
|
| 118 |
-
from transformer_engine.pytorch import fp8_autocast
|
| 119 |
-
try:
|
| 120 |
-
# Newer TE: use recipe-based API
|
| 121 |
-
from transformer_engine.common.recipe import DelayedScaling, Format
|
| 122 |
-
def make_fp8_ctx(enabled: bool = True):
|
| 123 |
-
if not enabled:
|
| 124 |
-
return contextlib.nullcontext()
|
| 125 |
-
fp8_recipe = DelayedScaling(fp8_format=Format.E4M3) # E4M3 format
|
| 126 |
-
return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)
|
| 127 |
-
except Exception:
|
| 128 |
-
# Very old variant that might still accept fp8_format directly
|
| 129 |
-
def make_fp8_ctx(enabled: bool = True):
|
| 130 |
-
# If TE doesn't have FP8Format, just no-op
|
| 131 |
-
if not hasattr(te, "FP8Format"):
|
| 132 |
-
return contextlib.nullcontext()
|
| 133 |
-
return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3)
|
| 134 |
-
except Exception:
|
| 135 |
-
# TE not present or totally incompatible — no-op
|
| 136 |
-
def make_fp8_ctx(enabled: bool = True):
|
| 137 |
-
return contextlib.nullcontext()
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# TE sometimes exposes Linear at different paths; this normalizes it.
|
| 141 |
-
try:
|
| 142 |
-
TELinear = te.Linear
|
| 143 |
-
except AttributeError: # very old layouts
|
| 144 |
-
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 145 |
-
|
| 146 |
-
# --- near imports ---
|
| 147 |
-
import torch
|
| 148 |
-
import torch.nn as nn
|
| 149 |
-
import transformer_engine.pytorch as te
|
| 150 |
-
|
| 151 |
-
try:
|
| 152 |
-
TELinear = te.Linear
|
| 153 |
-
except AttributeError:
|
| 154 |
-
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 155 |
-
|
| 156 |
-
import torch
|
| 157 |
-
import torch.nn as nn
|
| 158 |
-
import transformer_engine.pytorch as te
|
| 159 |
-
|
| 160 |
-
try:
|
| 161 |
-
TELinear = te.Linear
|
| 162 |
-
except AttributeError:
|
| 163 |
-
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 164 |
-
|
| 165 |
-
def _default_te_allow(fullname: str, lin: nn.Linear) -> bool:
|
| 166 |
-
"""
|
| 167 |
-
Allow TE only where it's shape-safe & beneficial.
|
| 168 |
-
Skip small/special layers (time/timestep/pos embeds, heads).
|
| 169 |
-
Enforce multiples of 16 for in/out features (FP8 kernel friendly).
|
| 170 |
-
Also skip very small projections likely to see M=1.
|
| 171 |
-
"""
|
| 172 |
-
blocked_keywords = (
|
| 173 |
-
"time_embedding", "timestep", "time_embed",
|
| 174 |
-
"time_projection", "pos_embedding", "pos_embed",
|
| 175 |
-
"to_logits", "logits", "final_proj", "proj_out", "output_projection",
|
| 176 |
-
)
|
| 177 |
-
if any(k in fullname for k in blocked_keywords):
|
| 178 |
-
return False
|
| 179 |
-
|
| 180 |
-
# TE FP8 kernels like K, N divisible by 16
|
| 181 |
-
if lin.in_features % 16 != 0 or lin.out_features % 16 != 0:
|
| 182 |
-
return False
|
| 183 |
-
|
| 184 |
-
# Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs
|
| 185 |
-
if lin.in_features < 512 or lin.out_features < 512:
|
| 186 |
-
return False
|
| 187 |
-
|
| 188 |
-
# Whitelist: only convert inside transformer blocks if you know their prefix
|
| 189 |
-
# This further reduces risk of catching special heads elsewhere.
|
| 190 |
-
allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn")
|
| 191 |
-
if not any(tok in fullname for tok in allowed_context):
|
| 192 |
-
return False
|
| 193 |
-
|
| 194 |
-
return True
|
| 195 |
-
|
| 196 |
-
@torch.no_grad()
|
| 197 |
-
def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""):
|
| 198 |
-
for name, child in list(module.named_children()):
|
| 199 |
-
full = f"{_prefix}.{name}" if _prefix else name
|
| 200 |
-
convert_linears_to_te_fp8(child, allow_pred, full)
|
| 201 |
-
|
| 202 |
-
if isinstance(child, nn.Linear):
|
| 203 |
-
if allow_pred is not None and not allow_pred(full, child):
|
| 204 |
-
continue
|
| 205 |
-
|
| 206 |
-
te_lin = TELinear(
|
| 207 |
-
in_features=child.in_features,
|
| 208 |
-
out_features=child.out_features,
|
| 209 |
-
bias=(child.bias is not None),
|
| 210 |
-
params_dtype=torch.bfloat16,
|
| 211 |
-
).to(child.weight.device)
|
| 212 |
-
|
| 213 |
-
te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype))
|
| 214 |
-
if child.bias is not None:
|
| 215 |
-
te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype))
|
| 216 |
-
|
| 217 |
-
setattr(module, name, te_lin)
|
| 218 |
-
return module
|
| 219 |
-
|
| 220 |
-
class Generator():
|
| 221 |
-
def __init__(self, config: DictConfig):
|
| 222 |
-
self.config = config.copy()
|
| 223 |
-
OmegaConf.set_readonly(self.config, True)
|
| 224 |
-
self.logger = get_logger(self.__class__.__name__)
|
| 225 |
-
|
| 226 |
-
# init_torch(cudnn_benchmark=False)
|
| 227 |
-
self.configure_models()
|
| 228 |
-
|
| 229 |
-
def entrypoint(self):
|
| 230 |
-
|
| 231 |
-
self.inference_loop()
|
| 232 |
-
|
| 233 |
-
def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
|
| 234 |
-
device_mesh = None
|
| 235 |
-
fsdp_strategy = ShardingStrategy[sharding_strategy]
|
| 236 |
-
if (
|
| 237 |
-
fsdp_strategy in [ShardingStrategy._HYBRID_SHARD_ZERO2, ShardingStrategy.HYBRID_SHARD]
|
| 238 |
-
and device_mesh_config is not None
|
| 239 |
-
):
|
| 240 |
-
device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
|
| 241 |
-
return device_mesh, fsdp_strategy
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
def configure_models(self):
|
| 245 |
-
self.configure_dit_model(device="cuda")
|
| 246 |
-
|
| 247 |
-
self.dit.eval().to("cuda")
|
| 248 |
-
convert_linears_to_te_fp8(self.dit)
|
| 249 |
-
|
| 250 |
-
self.dit = torch.compile(self.dit, )
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
self.configure_vae_model(device="cuda")
|
| 254 |
-
if self.config.generation.get('extract_audio_feat', False):
|
| 255 |
-
self.configure_wav2vec(device="cpu")
|
| 256 |
-
self.configure_text_model(device="cuda")
|
| 257 |
-
|
| 258 |
-
# # Initialize fsdp.
|
| 259 |
-
# self.configure_dit_fsdp_model()
|
| 260 |
-
# self.configure_text_fsdp_model()
|
| 261 |
-
|
| 262 |
-
# quantize_(self.text_encoder, Int8WeightOnlyConfig())
|
| 263 |
-
# quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig())
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
def configure_dit_model(self, device=get_device()):
|
| 267 |
-
|
| 268 |
-
init_unified_parallel(self.config.dit.sp_size)
|
| 269 |
-
self.sp_size = get_unified_parallel_world_size()
|
| 270 |
-
|
| 271 |
-
# Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet).
|
| 272 |
-
init_device = "meta"
|
| 273 |
-
with torch.device(init_device):
|
| 274 |
-
self.dit = create_object(self.config.dit.model)
|
| 275 |
-
self.dit = self.dit.to(dtype=torch.bfloat16) # or: self.dit.bfloat16()
|
| 276 |
-
self.logger.info(f"Load DiT model on {init_device}.")
|
| 277 |
-
self.dit.eval().requires_grad_(False)
|
| 278 |
-
|
| 279 |
-
# Load dit checkpoint.
|
| 280 |
-
path = self.config.dit.checkpoint_dir
|
| 281 |
-
|
| 282 |
-
def _cast_state_dict_to_bf16(state):
|
| 283 |
-
for k, v in state.items():
|
| 284 |
-
if isinstance(v, torch.Tensor) and v.is_floating_point():
|
| 285 |
-
state[k] = v.to(dtype=torch.bfloat16, copy=False)
|
| 286 |
-
return state
|
| 287 |
-
|
| 288 |
-
if path.endswith(".pth"):
|
| 289 |
-
# Load to CPU first; we’ll move the model later.
|
| 290 |
-
state = torch.load(path, map_location="cpu", mmap=True)
|
| 291 |
-
state = _cast_state_dict_to_bf16(state)
|
| 292 |
-
missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
|
| 293 |
-
self.logger.info(
|
| 294 |
-
f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}"
|
| 295 |
-
)
|
| 296 |
-
else:
|
| 297 |
-
from safetensors.torch import load_file
|
| 298 |
-
import json
|
| 299 |
-
def load_custom_sharded_weights(model_dir, base_name):
|
| 300 |
-
index_path = f"{model_dir}/{base_name}.safetensors.index.json"
|
| 301 |
-
with open(index_path, "r") as f:
|
| 302 |
-
index = json.load(f)
|
| 303 |
-
weight_map = index["weight_map"]
|
| 304 |
-
shard_files = set(weight_map.values())
|
| 305 |
-
state_dict = {}
|
| 306 |
-
for shard_file in shard_files:
|
| 307 |
-
shard_path = f"{model_dir}/{shard_file}"
|
| 308 |
-
# Load on CPU, then cast to bf16; we’ll move the whole module later.
|
| 309 |
-
shard_state = load_file(shard_path, device="cpu")
|
| 310 |
-
shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v)
|
| 311 |
-
for k, v in shard_state.items()}
|
| 312 |
-
state_dict.update(shard_state)
|
| 313 |
-
return state_dict
|
| 314 |
-
|
| 315 |
-
state = load_custom_sharded_weights(path, 'humo')
|
| 316 |
-
self.dit.load_state_dict(state, strict=False, assign=True)
|
| 317 |
-
|
| 318 |
-
self.dit = meta_non_persistent_buffer_init_fn(self.dit)
|
| 319 |
-
|
| 320 |
-
target_device = get_device() if device in [get_device(), "cuda"] else device
|
| 321 |
-
self.dit.to(target_device) # dtype already bf16
|
| 322 |
-
|
| 323 |
-
# Print model size.
|
| 324 |
-
params = sum(p.numel() for p in self.dit.parameters())
|
| 325 |
-
self.logger.info(
|
| 326 |
-
f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
def configure_vae_model(self, device=get_device()):
|
| 331 |
-
self.vae_stride = self.config.vae.vae_stride
|
| 332 |
-
self.vae = WanVAE(
|
| 333 |
-
vae_pth=self.config.vae.checkpoint,
|
| 334 |
-
device=device)
|
| 335 |
-
|
| 336 |
-
if self.config.generation.height == 480:
|
| 337 |
-
self.zero_vae = torch.load(self.config.dit.zero_vae_path)
|
| 338 |
-
elif self.config.generation.height == 720:
|
| 339 |
-
self.zero_vae = torch.load(self.config.dit.zero_vae_720p_path)
|
| 340 |
-
else:
|
| 341 |
-
raise ValueError(f"Unsupported height {self.config.generation.height} for zero-vae.")
|
| 342 |
-
|
| 343 |
-
def configure_wav2vec(self, device=get_device()):
|
| 344 |
-
audio_separator_model_file = self.config.audio.vocal_separator
|
| 345 |
-
wav2vec_model_path = self.config.audio.wav2vec_model
|
| 346 |
-
|
| 347 |
-
self.audio_processor = AudioProcessor(
|
| 348 |
-
16000,
|
| 349 |
-
25,
|
| 350 |
-
wav2vec_model_path,
|
| 351 |
-
"all",
|
| 352 |
-
audio_separator_model_file,
|
| 353 |
-
None, # not seperate
|
| 354 |
-
os.path.join(self.config.generation.output.dir, "vocals"),
|
| 355 |
-
device=device,
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
def configure_text_model(self, device=get_device()):
|
| 359 |
-
self.text_encoder = T5EncoderModel(
|
| 360 |
-
text_len=self.config.dit.model.text_len,
|
| 361 |
-
dtype=torch.bfloat16,
|
| 362 |
-
device=device,
|
| 363 |
-
checkpoint_path=self.config.text.t5_checkpoint,
|
| 364 |
-
tokenizer_path=self.config.text.t5_tokenizer,
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
def configure_dit_fsdp_model(self):
|
| 369 |
-
from humo.models.wan_modules.model_humo import WanAttentionBlock
|
| 370 |
-
|
| 371 |
-
dit_blocks = (WanAttentionBlock,)
|
| 372 |
-
|
| 373 |
-
# Init model_shard_cpu_group for saving checkpoint with sharded state_dict.
|
| 374 |
-
init_model_shard_cpu_group(
|
| 375 |
-
self.config.dit.fsdp.sharding_strategy,
|
| 376 |
-
self.config.dit.fsdp.get("device_mesh", None),
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
# Assert that dit has wrappable blocks.
|
| 380 |
-
assert any(isinstance(m, dit_blocks) for m in self.dit.modules())
|
| 381 |
-
|
| 382 |
-
# Define wrap policy on all dit blocks.
|
| 383 |
-
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 384 |
-
return recurse or isinstance(module, dit_blocks)
|
| 385 |
-
|
| 386 |
-
# Configure FSDP settings.
|
| 387 |
-
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 388 |
-
self.config.dit.fsdp.sharding_strategy,
|
| 389 |
-
self.config.dit.fsdp.get("device_mesh", None),
|
| 390 |
-
)
|
| 391 |
-
settings = dict(
|
| 392 |
-
auto_wrap_policy=custom_auto_wrap_policy,
|
| 393 |
-
sharding_strategy=fsdp_strategy,
|
| 394 |
-
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 395 |
-
device_id=get_local_rank(),
|
| 396 |
-
use_orig_params=False,
|
| 397 |
-
sync_module_states=True,
|
| 398 |
-
forward_prefetch=True,
|
| 399 |
-
limit_all_gathers=False, # False for ZERO2.
|
| 400 |
-
mixed_precision=MixedPrecision(
|
| 401 |
-
param_dtype=torch.bfloat16,
|
| 402 |
-
reduce_dtype=torch.float32,
|
| 403 |
-
buffer_dtype=torch.float32,
|
| 404 |
-
),
|
| 405 |
-
device_mesh=device_mesh,
|
| 406 |
-
param_init_fn=meta_param_init_fn,
|
| 407 |
-
)
|
| 408 |
-
|
| 409 |
-
# Apply FSDP.
|
| 410 |
-
self.dit = FullyShardedDataParallel(self.dit, **settings)
|
| 411 |
-
# self.dit.to(get_device())
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
def configure_text_fsdp_model(self):
|
| 415 |
-
# If FSDP is not enabled, put text_encoder to GPU and return.
|
| 416 |
-
if not self.config.text.fsdp.enabled:
|
| 417 |
-
self.text_encoder.to(get_device())
|
| 418 |
-
return
|
| 419 |
-
|
| 420 |
-
# from transformers.models.t5.modeling_t5 import T5Block
|
| 421 |
-
from humo.models.wan_modules.t5 import T5SelfAttention
|
| 422 |
-
|
| 423 |
-
text_blocks = (torch.nn.Embedding, T5SelfAttention)
|
| 424 |
-
# text_blocks_names = ("QWenBlock", "QWenModel") # QWen cannot be imported. Use str.
|
| 425 |
-
|
| 426 |
-
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 427 |
-
return (
|
| 428 |
-
recurse
|
| 429 |
-
or isinstance(module, text_blocks)
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
# Apply FSDP.
|
| 433 |
-
text_encoder_dtype = getattr(torch, self.config.text.dtype)
|
| 434 |
-
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 435 |
-
self.config.text.fsdp.sharding_strategy,
|
| 436 |
-
self.config.text.fsdp.get("device_mesh", None),
|
| 437 |
-
)
|
| 438 |
-
self.text_encoder = FullyShardedDataParallel(
|
| 439 |
-
module=self.text_encoder,
|
| 440 |
-
auto_wrap_policy=custom_auto_wrap_policy,
|
| 441 |
-
sharding_strategy=fsdp_strategy,
|
| 442 |
-
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 443 |
-
device_id=get_local_rank(),
|
| 444 |
-
use_orig_params=False,
|
| 445 |
-
sync_module_states=False,
|
| 446 |
-
forward_prefetch=True,
|
| 447 |
-
limit_all_gathers=True,
|
| 448 |
-
mixed_precision=MixedPrecision(
|
| 449 |
-
param_dtype=text_encoder_dtype,
|
| 450 |
-
reduce_dtype=text_encoder_dtype,
|
| 451 |
-
buffer_dtype=text_encoder_dtype,
|
| 452 |
-
),
|
| 453 |
-
device_mesh=device_mesh,
|
| 454 |
-
)
|
| 455 |
-
self.text_encoder.to(get_device()).requires_grad_(False)
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
def load_image_latent_ref_id(self, path: str, size, device):
|
| 459 |
-
# Load size.
|
| 460 |
-
h, w = size[1], size[0]
|
| 461 |
-
|
| 462 |
-
# Load image.
|
| 463 |
-
if len(path) > 1 and not isinstance(path, str):
|
| 464 |
-
ref_vae_latents = []
|
| 465 |
-
for image_path in path:
|
| 466 |
-
with Image.open(image_path) as img:
|
| 467 |
-
img = img.convert("RGB")
|
| 468 |
-
|
| 469 |
-
# Calculate the required size to keep aspect ratio and fill the rest with padding.
|
| 470 |
-
img_ratio = img.width / img.height
|
| 471 |
-
target_ratio = w / h
|
| 472 |
-
|
| 473 |
-
if img_ratio > target_ratio: # Image is wider than target
|
| 474 |
-
new_width = w
|
| 475 |
-
new_height = int(new_width / img_ratio)
|
| 476 |
-
else: # Image is taller than target
|
| 477 |
-
new_height = h
|
| 478 |
-
new_width = int(new_height * img_ratio)
|
| 479 |
-
|
| 480 |
-
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 481 |
-
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 482 |
-
|
| 483 |
-
# Create a new image with the target size and place the resized image in the center
|
| 484 |
-
delta_w = w - img.size[0]
|
| 485 |
-
delta_h = h - img.size[1]
|
| 486 |
-
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
|
| 487 |
-
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
|
| 488 |
-
|
| 489 |
-
# Transform to tensor and normalize.
|
| 490 |
-
transform = Compose(
|
| 491 |
-
[
|
| 492 |
-
ToTensor(),
|
| 493 |
-
Normalize(0.5, 0.5),
|
| 494 |
-
]
|
| 495 |
-
)
|
| 496 |
-
new_img = transform(new_img)
|
| 497 |
-
# img_vae_latent = self.vae_encode([new_img.unsqueeze(1)])[0]
|
| 498 |
-
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
|
| 499 |
-
ref_vae_latents.append(img_vae_latent[0])
|
| 500 |
-
|
| 501 |
-
return [torch.cat(ref_vae_latents, dim=1)]
|
| 502 |
-
else:
|
| 503 |
-
if not isinstance(path, str):
|
| 504 |
-
path = path[0]
|
| 505 |
-
with Image.open(path) as img:
|
| 506 |
-
img = img.convert("RGB")
|
| 507 |
-
|
| 508 |
-
# Calculate the required size to keep aspect ratio and fill the rest with padding.
|
| 509 |
-
img_ratio = img.width / img.height
|
| 510 |
-
target_ratio = w / h
|
| 511 |
-
|
| 512 |
-
if img_ratio > target_ratio: # Image is wider than target
|
| 513 |
-
new_width = w
|
| 514 |
-
new_height = int(new_width / img_ratio)
|
| 515 |
-
else: # Image is taller than target
|
| 516 |
-
new_height = h
|
| 517 |
-
new_width = int(new_height * img_ratio)
|
| 518 |
-
|
| 519 |
-
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 520 |
-
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 521 |
-
|
| 522 |
-
# Create a new image with the target size and place the resized image in the center
|
| 523 |
-
delta_w = w - img.size[0]
|
| 524 |
-
delta_h = h - img.size[1]
|
| 525 |
-
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
|
| 526 |
-
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
|
| 527 |
-
|
| 528 |
-
# Transform to tensor and normalize.
|
| 529 |
-
transform = Compose(
|
| 530 |
-
[
|
| 531 |
-
ToTensor(),
|
| 532 |
-
Normalize(0.5, 0.5),
|
| 533 |
-
]
|
| 534 |
-
)
|
| 535 |
-
new_img = transform(new_img)
|
| 536 |
-
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
|
| 537 |
-
|
| 538 |
-
# Vae encode.
|
| 539 |
-
return img_vae_latent
|
| 540 |
-
|
| 541 |
-
def get_audio_emb_window(self, audio_emb, frame_num, frame0_idx, audio_shift=2):
|
| 542 |
-
zero_audio_embed = torch.zeros((audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device)
|
| 543 |
-
zero_audio_embed_3 = torch.zeros((3, audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device) # device=audio_emb.device
|
| 544 |
-
iter_ = 1 + (frame_num - 1) // 4
|
| 545 |
-
audio_emb_wind = []
|
| 546 |
-
for lt_i in range(iter_):
|
| 547 |
-
if lt_i == 0:
|
| 548 |
-
st = frame0_idx + lt_i - 2
|
| 549 |
-
ed = frame0_idx + lt_i + 3
|
| 550 |
-
wind_feat = torch.stack([
|
| 551 |
-
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
|
| 552 |
-
for i in range(st, ed)
|
| 553 |
-
], dim=0)
|
| 554 |
-
wind_feat = torch.cat((zero_audio_embed_3, wind_feat), dim=0)
|
| 555 |
-
else:
|
| 556 |
-
st = frame0_idx + 1 + 4 * (lt_i - 1) - audio_shift
|
| 557 |
-
ed = frame0_idx + 1 + 4 * lt_i + audio_shift
|
| 558 |
-
wind_feat = torch.stack([
|
| 559 |
-
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
|
| 560 |
-
for i in range(st, ed)
|
| 561 |
-
], dim=0)
|
| 562 |
-
audio_emb_wind.append(wind_feat)
|
| 563 |
-
audio_emb_wind = torch.stack(audio_emb_wind, dim=0)
|
| 564 |
-
|
| 565 |
-
return audio_emb_wind, ed - audio_shift
|
| 566 |
-
|
| 567 |
-
def audio_emb_enc(self, audio_emb, wav_enc_type="whisper"):
|
| 568 |
-
if wav_enc_type == "wav2vec":
|
| 569 |
-
feat_merge = audio_emb
|
| 570 |
-
elif wav_enc_type == "whisper":
|
| 571 |
-
feat0 = linear_interpolation_fps(audio_emb[:, :, 0: 8].mean(dim=2), 50, 25)
|
| 572 |
-
feat1 = linear_interpolation_fps(audio_emb[:, :, 8: 16].mean(dim=2), 50, 25)
|
| 573 |
-
feat2 = linear_interpolation_fps(audio_emb[:, :, 16: 24].mean(dim=2), 50, 25)
|
| 574 |
-
feat3 = linear_interpolation_fps(audio_emb[:, :, 24: 32].mean(dim=2), 50, 25)
|
| 575 |
-
feat4 = linear_interpolation_fps(audio_emb[:, :, 32], 50, 25)
|
| 576 |
-
feat_merge = torch.stack([feat0, feat1, feat2, feat3, feat4], dim=2)[0]
|
| 577 |
-
else:
|
| 578 |
-
raise ValueError(f"Unsupported wav_enc_type: {wav_enc_type}")
|
| 579 |
-
|
| 580 |
-
return feat_merge
|
| 581 |
-
|
| 582 |
-
def parse_output(self, output):
|
| 583 |
-
latent = output[0]
|
| 584 |
-
mask = None
|
| 585 |
-
return latent, mask
|
| 586 |
-
|
| 587 |
-
def forward_tia(self, latents, timestep, t, step_change, arg_tia, arg_ti, arg_i, arg_null):
|
| 588 |
-
pos_tia, _ = self.parse_output(self.dit(
|
| 589 |
-
latents, t=timestep, **arg_tia
|
| 590 |
-
))
|
| 591 |
-
torch.cuda.empty_cache()
|
| 592 |
-
|
| 593 |
-
pos_ti, _ = self.parse_output(self.dit(
|
| 594 |
-
latents, t=timestep, **arg_ti
|
| 595 |
-
))
|
| 596 |
-
torch.cuda.empty_cache()
|
| 597 |
-
|
| 598 |
-
if t > step_change:
|
| 599 |
-
neg, _ = self.parse_output(self.dit(
|
| 600 |
-
latents, t=timestep, **arg_i
|
| 601 |
-
)) # img included in null, same with official Wan-2.1
|
| 602 |
-
torch.cuda.empty_cache()
|
| 603 |
-
|
| 604 |
-
noise_pred = self.config.generation.scale_a * (pos_tia - pos_ti) + \
|
| 605 |
-
self.config.generation.scale_t * (pos_ti - neg) + \
|
| 606 |
-
neg
|
| 607 |
-
else:
|
| 608 |
-
neg, _ = self.parse_output(self.dit(
|
| 609 |
-
latents, t=timestep, **arg_null
|
| 610 |
-
)) # img not included in null
|
| 611 |
-
torch.cuda.empty_cache()
|
| 612 |
-
|
| 613 |
-
noise_pred = self.config.generation.scale_a * (pos_tia - pos_ti) + \
|
| 614 |
-
(self.config.generation.scale_t - 2.0) * (pos_ti - neg) + \
|
| 615 |
-
neg
|
| 616 |
-
return noise_pred
|
| 617 |
-
|
| 618 |
-
def forward_ti(self, latents, timestep, t, step_change, arg_ti, arg_t, arg_i, arg_null):
|
| 619 |
-
# Positive with text+image (no audio)
|
| 620 |
-
pos_ti, _ = self.parse_output(self.dit(
|
| 621 |
-
latents, t=timestep, **arg_ti
|
| 622 |
-
))
|
| 623 |
-
torch.cuda.empty_cache()
|
| 624 |
-
|
| 625 |
-
# Positive with text only (no image, no audio)
|
| 626 |
-
pos_t, _ = self.parse_output(self.dit(
|
| 627 |
-
latents, t=timestep, **arg_t
|
| 628 |
-
))
|
| 629 |
-
torch.cuda.empty_cache()
|
| 630 |
-
|
| 631 |
-
# Negative branch: before step_change, don't include image in null; after, include image (like Wan-2.1)
|
| 632 |
-
if t > step_change:
|
| 633 |
-
neg, _ = self.parse_output(self.dit(
|
| 634 |
-
latents, t=timestep, **arg_i
|
| 635 |
-
)) # img included in null
|
| 636 |
-
else:
|
| 637 |
-
neg, _ = self.parse_output(self.dit(
|
| 638 |
-
latents, t=timestep, **arg_null
|
| 639 |
-
)) # img NOT included in null
|
| 640 |
-
torch.cuda.empty_cache()
|
| 641 |
-
|
| 642 |
-
# Guidance blend: replace "scale_a" below with "scale_i" if you add a separate image scale in config
|
| 643 |
-
noise_pred = self.config.generation.scale_a * (pos_ti - pos_t) + \
|
| 644 |
-
self.config.generation.scale_t * (pos_t - neg) + \
|
| 645 |
-
neg
|
| 646 |
-
return noise_pred
|
| 647 |
-
|
| 648 |
-
def forward_ta(self, latents, timestep, arg_ta, arg_t, arg_null):
|
| 649 |
-
pos_ta, _ = self.parse_output(self.dit(
|
| 650 |
-
latents, t=timestep, **arg_ta
|
| 651 |
-
))
|
| 652 |
-
torch.cuda.empty_cache()
|
| 653 |
-
|
| 654 |
-
pos_t, _ = self.parse_output(self.dit(
|
| 655 |
-
latents, t=timestep, **arg_t
|
| 656 |
-
))
|
| 657 |
-
torch.cuda.empty_cache()
|
| 658 |
-
|
| 659 |
-
neg, _ = self.parse_output(self.dit(
|
| 660 |
-
latents, t=timestep, **arg_null
|
| 661 |
-
))
|
| 662 |
-
torch.cuda.empty_cache()
|
| 663 |
-
|
| 664 |
-
noise_pred = self.config.generation.scale_a * (pos_ta - pos_t) + \
|
| 665 |
-
self.config.generation.scale_t * (pos_t - neg) + \
|
| 666 |
-
neg
|
| 667 |
-
return noise_pred
|
| 668 |
-
|
| 669 |
-
@torch.no_grad()
|
| 670 |
-
def inference(self,
|
| 671 |
-
input_prompt,
|
| 672 |
-
img_path,
|
| 673 |
-
audio_path,
|
| 674 |
-
size=(1280, 720),
|
| 675 |
-
frame_num=81,
|
| 676 |
-
shift=5.0,
|
| 677 |
-
sample_solver='unipc',
|
| 678 |
-
inference_mode='TIA',
|
| 679 |
-
sampling_steps=50,
|
| 680 |
-
n_prompt="",
|
| 681 |
-
seed=-1,
|
| 682 |
-
tea_cache_l1_thresh = 0.0,
|
| 683 |
-
device = get_device(),
|
| 684 |
-
):
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
latents_ref =
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
audio_emb
|
| 705 |
-
self.
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
tea_cache_l1_thresh = tea_cache_l1_thresh
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
noise_pred
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
# self.
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
self.
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
self.
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
return not should_calc
|
| 975 |
-
|
| 976 |
-
def store(self, hidden_states):
|
| 977 |
-
if self.previous_hidden_states is None:
|
| 978 |
-
return
|
| 979 |
-
self.previous_residual = hidden_states - self.previous_hidden_states
|
| 980 |
-
self.previous_hidden_states = None
|
| 981 |
-
|
| 982 |
-
def update(self, hidden_states):
|
| 983 |
-
hidden_states = hidden_states + self.previous_residual
|
| 984 |
return hidden_states
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 3 |
+
# you may not use this file except in compliance with the License.
|
| 4 |
+
# You may obtain a copy of the License at
|
| 5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 6 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 7 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 8 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 9 |
+
# See the License for the specific language governing permissions and
|
| 10 |
+
# limitations under the License.
|
| 11 |
+
|
| 12 |
+
# Inference codes adapted from [SeedVR]
|
| 13 |
+
# https://github.com/ByteDance-Seed/SeedVR/blob/main/projects/inference_seedvr2_7b.py
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
import os
|
| 17 |
+
import gc
|
| 18 |
+
import random
|
| 19 |
+
import sys
|
| 20 |
+
import mediapy
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
from omegaconf import OmegaConf
|
| 27 |
+
from PIL import Image, ImageOps
|
| 28 |
+
from torchvision.transforms import ToTensor
|
| 29 |
+
from tqdm import tqdm
|
| 30 |
+
from torch.distributed.device_mesh import init_device_mesh
|
| 31 |
+
from torch.distributed.fsdp import (
|
| 32 |
+
BackwardPrefetch,
|
| 33 |
+
FullyShardedDataParallel,
|
| 34 |
+
MixedPrecision,
|
| 35 |
+
ShardingStrategy,
|
| 36 |
+
)
|
| 37 |
+
from common.distributed import (
|
| 38 |
+
get_device,
|
| 39 |
+
get_global_rank,
|
| 40 |
+
get_local_rank,
|
| 41 |
+
meta_param_init_fn,
|
| 42 |
+
meta_non_persistent_buffer_init_fn,
|
| 43 |
+
init_torch,
|
| 44 |
+
)
|
| 45 |
+
from common.distributed.advanced import (
|
| 46 |
+
init_unified_parallel,
|
| 47 |
+
get_unified_parallel_world_size,
|
| 48 |
+
get_sequence_parallel_rank,
|
| 49 |
+
init_model_shard_cpu_group,
|
| 50 |
+
)
|
| 51 |
+
from common.logger import get_logger
|
| 52 |
+
from common.config import create_object
|
| 53 |
+
from common.distributed import get_device, get_global_rank
|
| 54 |
+
from torchvision.transforms import Compose, Normalize, ToTensor
|
| 55 |
+
from humo.models.wan_modules.t5 import T5EncoderModel
|
| 56 |
+
from humo.models.wan_modules.vae import WanVAE
|
| 57 |
+
from humo.models.utils.utils import tensor_to_video, prepare_json_dataset
|
| 58 |
+
from contextlib import contextmanager
|
| 59 |
+
import torch.cuda.amp as amp
|
| 60 |
+
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
| 61 |
+
from humo.utils.audio_processor_whisper import AudioProcessor
|
| 62 |
+
from humo.utils.wav2vec import linear_interpolation_fps
|
| 63 |
+
from torchao.quantization import quantize_
|
| 64 |
+
|
| 65 |
+
import torch._dynamo as dynamo
|
| 66 |
+
dynamo.config.capture_scalar_outputs = True
|
| 67 |
+
torch.set_float32_matmul_precision("high")
|
| 68 |
+
|
| 69 |
+
import torch
|
| 70 |
+
import torch.nn as nn
|
| 71 |
+
import transformer_engine.pytorch as te
|
| 72 |
+
|
| 73 |
+
image_transform = Compose([
|
| 74 |
+
ToTensor(),
|
| 75 |
+
Normalize(mean=0.5, std=0.5),
|
| 76 |
+
])
|
| 77 |
+
|
| 78 |
+
SIZE_CONFIGS = {
|
| 79 |
+
'720*1280': (720, 1280),
|
| 80 |
+
'1280*720': (1280, 720),
|
| 81 |
+
'480*832': (480, 832),
|
| 82 |
+
'832*480': (832, 480),
|
| 83 |
+
'1024*1024': (1024, 1024),
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
def clever_format(nums, format="%.2f"):
|
| 87 |
+
from typing import Iterable
|
| 88 |
+
if not isinstance(nums, Iterable):
|
| 89 |
+
nums = [nums]
|
| 90 |
+
clever_nums = []
|
| 91 |
+
for num in nums:
|
| 92 |
+
if num > 1e12:
|
| 93 |
+
clever_nums.append(format % (num / 1e12) + "T")
|
| 94 |
+
elif num > 1e9:
|
| 95 |
+
clever_nums.append(format % (num / 1e9) + "G")
|
| 96 |
+
elif num > 1e6:
|
| 97 |
+
clever_nums.append(format % (num / 1e6) + "M")
|
| 98 |
+
elif num > 1e3:
|
| 99 |
+
clever_nums.append(format % (num / 1e3) + "K")
|
| 100 |
+
else:
|
| 101 |
+
clever_nums.append(format % num + "B")
|
| 102 |
+
|
| 103 |
+
clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)
|
| 104 |
+
|
| 105 |
+
return clever_nums
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# --- put near your imports ---
|
| 110 |
+
import torch
|
| 111 |
+
import torch.nn as nn
|
| 112 |
+
import contextlib
|
| 113 |
+
import transformer_engine.pytorch as te
|
| 114 |
+
|
| 115 |
+
# FP8 autocast compatibility for different TE versions
|
| 116 |
+
try:
|
| 117 |
+
# Preferred modern API
|
| 118 |
+
from transformer_engine.pytorch import fp8_autocast
|
| 119 |
+
try:
|
| 120 |
+
# Newer TE: use recipe-based API
|
| 121 |
+
from transformer_engine.common.recipe import DelayedScaling, Format
|
| 122 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 123 |
+
if not enabled:
|
| 124 |
+
return contextlib.nullcontext()
|
| 125 |
+
fp8_recipe = DelayedScaling(fp8_format=Format.E4M3) # E4M3 format
|
| 126 |
+
return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)
|
| 127 |
+
except Exception:
|
| 128 |
+
# Very old variant that might still accept fp8_format directly
|
| 129 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 130 |
+
# If TE doesn't have FP8Format, just no-op
|
| 131 |
+
if not hasattr(te, "FP8Format"):
|
| 132 |
+
return contextlib.nullcontext()
|
| 133 |
+
return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3)
|
| 134 |
+
except Exception:
|
| 135 |
+
# TE not present or totally incompatible — no-op
|
| 136 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 137 |
+
return contextlib.nullcontext()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# TE sometimes exposes Linear at different paths; this normalizes it.
|
| 141 |
+
try:
|
| 142 |
+
TELinear = te.Linear
|
| 143 |
+
except AttributeError: # very old layouts
|
| 144 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 145 |
+
|
| 146 |
+
# --- near imports ---
|
| 147 |
+
import torch
|
| 148 |
+
import torch.nn as nn
|
| 149 |
+
import transformer_engine.pytorch as te
|
| 150 |
+
|
| 151 |
+
try:
|
| 152 |
+
TELinear = te.Linear
|
| 153 |
+
except AttributeError:
|
| 154 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 155 |
+
|
| 156 |
+
import torch
|
| 157 |
+
import torch.nn as nn
|
| 158 |
+
import transformer_engine.pytorch as te
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
TELinear = te.Linear
|
| 162 |
+
except AttributeError:
|
| 163 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 164 |
+
|
| 165 |
+
def _default_te_allow(fullname: str, lin: nn.Linear) -> bool:
|
| 166 |
+
"""
|
| 167 |
+
Allow TE only where it's shape-safe & beneficial.
|
| 168 |
+
Skip small/special layers (time/timestep/pos embeds, heads).
|
| 169 |
+
Enforce multiples of 16 for in/out features (FP8 kernel friendly).
|
| 170 |
+
Also skip very small projections likely to see M=1.
|
| 171 |
+
"""
|
| 172 |
+
blocked_keywords = (
|
| 173 |
+
"time_embedding", "timestep", "time_embed",
|
| 174 |
+
"time_projection", "pos_embedding", "pos_embed",
|
| 175 |
+
"to_logits", "logits", "final_proj", "proj_out", "output_projection",
|
| 176 |
+
)
|
| 177 |
+
if any(k in fullname for k in blocked_keywords):
|
| 178 |
+
return False
|
| 179 |
+
|
| 180 |
+
# TE FP8 kernels like K, N divisible by 16
|
| 181 |
+
if lin.in_features % 16 != 0 or lin.out_features % 16 != 0:
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
# Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs
|
| 185 |
+
if lin.in_features < 512 or lin.out_features < 512:
|
| 186 |
+
return False
|
| 187 |
+
|
| 188 |
+
# Whitelist: only convert inside transformer blocks if you know their prefix
|
| 189 |
+
# This further reduces risk of catching special heads elsewhere.
|
| 190 |
+
allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn")
|
| 191 |
+
if not any(tok in fullname for tok in allowed_context):
|
| 192 |
+
return False
|
| 193 |
+
|
| 194 |
+
return True
|
| 195 |
+
|
| 196 |
+
@torch.no_grad()
|
| 197 |
+
def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""):
|
| 198 |
+
for name, child in list(module.named_children()):
|
| 199 |
+
full = f"{_prefix}.{name}" if _prefix else name
|
| 200 |
+
convert_linears_to_te_fp8(child, allow_pred, full)
|
| 201 |
+
|
| 202 |
+
if isinstance(child, nn.Linear):
|
| 203 |
+
if allow_pred is not None and not allow_pred(full, child):
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
te_lin = TELinear(
|
| 207 |
+
in_features=child.in_features,
|
| 208 |
+
out_features=child.out_features,
|
| 209 |
+
bias=(child.bias is not None),
|
| 210 |
+
params_dtype=torch.bfloat16,
|
| 211 |
+
).to(child.weight.device)
|
| 212 |
+
|
| 213 |
+
te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype))
|
| 214 |
+
if child.bias is not None:
|
| 215 |
+
te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype))
|
| 216 |
+
|
| 217 |
+
setattr(module, name, te_lin)
|
| 218 |
+
return module
|
| 219 |
+
|
| 220 |
+
class Generator():
|
| 221 |
+
def __init__(self, config: DictConfig):
|
| 222 |
+
self.config = config.copy()
|
| 223 |
+
OmegaConf.set_readonly(self.config, True)
|
| 224 |
+
self.logger = get_logger(self.__class__.__name__)
|
| 225 |
+
|
| 226 |
+
# init_torch(cudnn_benchmark=False)
|
| 227 |
+
self.configure_models()
|
| 228 |
+
|
| 229 |
+
def entrypoint(self):
|
| 230 |
+
|
| 231 |
+
self.inference_loop()
|
| 232 |
+
|
| 233 |
+
def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
|
| 234 |
+
device_mesh = None
|
| 235 |
+
fsdp_strategy = ShardingStrategy[sharding_strategy]
|
| 236 |
+
if (
|
| 237 |
+
fsdp_strategy in [ShardingStrategy._HYBRID_SHARD_ZERO2, ShardingStrategy.HYBRID_SHARD]
|
| 238 |
+
and device_mesh_config is not None
|
| 239 |
+
):
|
| 240 |
+
device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
|
| 241 |
+
return device_mesh, fsdp_strategy
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def configure_models(self):
|
| 245 |
+
self.configure_dit_model(device="cuda")
|
| 246 |
+
|
| 247 |
+
self.dit.eval().to("cuda")
|
| 248 |
+
convert_linears_to_te_fp8(self.dit)
|
| 249 |
+
|
| 250 |
+
self.dit = torch.compile(self.dit, )
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
self.configure_vae_model(device="cuda")
|
| 254 |
+
if self.config.generation.get('extract_audio_feat', False):
|
| 255 |
+
self.configure_wav2vec(device="cpu")
|
| 256 |
+
self.configure_text_model(device="cuda")
|
| 257 |
+
|
| 258 |
+
# # Initialize fsdp.
|
| 259 |
+
# self.configure_dit_fsdp_model()
|
| 260 |
+
# self.configure_text_fsdp_model()
|
| 261 |
+
|
| 262 |
+
# quantize_(self.text_encoder, Int8WeightOnlyConfig())
|
| 263 |
+
# quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig())
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def configure_dit_model(self, device=get_device()):
|
| 267 |
+
|
| 268 |
+
init_unified_parallel(self.config.dit.sp_size)
|
| 269 |
+
self.sp_size = get_unified_parallel_world_size()
|
| 270 |
+
|
| 271 |
+
# Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet).
|
| 272 |
+
init_device = "meta"
|
| 273 |
+
with torch.device(init_device):
|
| 274 |
+
self.dit = create_object(self.config.dit.model)
|
| 275 |
+
self.dit = self.dit.to(dtype=torch.bfloat16) # or: self.dit.bfloat16()
|
| 276 |
+
self.logger.info(f"Load DiT model on {init_device}.")
|
| 277 |
+
self.dit.eval().requires_grad_(False)
|
| 278 |
+
|
| 279 |
+
# Load dit checkpoint.
|
| 280 |
+
path = self.config.dit.checkpoint_dir
|
| 281 |
+
|
| 282 |
+
def _cast_state_dict_to_bf16(state):
|
| 283 |
+
for k, v in state.items():
|
| 284 |
+
if isinstance(v, torch.Tensor) and v.is_floating_point():
|
| 285 |
+
state[k] = v.to(dtype=torch.bfloat16, copy=False)
|
| 286 |
+
return state
|
| 287 |
+
|
| 288 |
+
if path.endswith(".pth"):
|
| 289 |
+
# Load to CPU first; we’ll move the model later.
|
| 290 |
+
state = torch.load(path, map_location="cpu", mmap=True)
|
| 291 |
+
state = _cast_state_dict_to_bf16(state)
|
| 292 |
+
missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
|
| 293 |
+
self.logger.info(
|
| 294 |
+
f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}"
|
| 295 |
+
)
|
| 296 |
+
else:
|
| 297 |
+
from safetensors.torch import load_file
|
| 298 |
+
import json
|
| 299 |
+
def load_custom_sharded_weights(model_dir, base_name):
|
| 300 |
+
index_path = f"{model_dir}/{base_name}.safetensors.index.json"
|
| 301 |
+
with open(index_path, "r") as f:
|
| 302 |
+
index = json.load(f)
|
| 303 |
+
weight_map = index["weight_map"]
|
| 304 |
+
shard_files = set(weight_map.values())
|
| 305 |
+
state_dict = {}
|
| 306 |
+
for shard_file in shard_files:
|
| 307 |
+
shard_path = f"{model_dir}/{shard_file}"
|
| 308 |
+
# Load on CPU, then cast to bf16; we’ll move the whole module later.
|
| 309 |
+
shard_state = load_file(shard_path, device="cpu")
|
| 310 |
+
shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v)
|
| 311 |
+
for k, v in shard_state.items()}
|
| 312 |
+
state_dict.update(shard_state)
|
| 313 |
+
return state_dict
|
| 314 |
+
|
| 315 |
+
state = load_custom_sharded_weights(path, 'humo')
|
| 316 |
+
self.dit.load_state_dict(state, strict=False, assign=True)
|
| 317 |
+
|
| 318 |
+
self.dit = meta_non_persistent_buffer_init_fn(self.dit)
|
| 319 |
+
|
| 320 |
+
target_device = get_device() if device in [get_device(), "cuda"] else device
|
| 321 |
+
self.dit.to(target_device) # dtype already bf16
|
| 322 |
+
|
| 323 |
+
# Print model size.
|
| 324 |
+
params = sum(p.numel() for p in self.dit.parameters())
|
| 325 |
+
self.logger.info(
|
| 326 |
+
f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def configure_vae_model(self, device=get_device()):
|
| 331 |
+
self.vae_stride = self.config.vae.vae_stride
|
| 332 |
+
self.vae = WanVAE(
|
| 333 |
+
vae_pth=self.config.vae.checkpoint,
|
| 334 |
+
device=device)
|
| 335 |
+
|
| 336 |
+
if self.config.generation.height == 480:
|
| 337 |
+
self.zero_vae = torch.load(self.config.dit.zero_vae_path)
|
| 338 |
+
elif self.config.generation.height == 720:
|
| 339 |
+
self.zero_vae = torch.load(self.config.dit.zero_vae_720p_path)
|
| 340 |
+
else:
|
| 341 |
+
raise ValueError(f"Unsupported height {self.config.generation.height} for zero-vae.")
|
| 342 |
+
|
| 343 |
+
def configure_wav2vec(self, device=get_device()):
|
| 344 |
+
audio_separator_model_file = self.config.audio.vocal_separator
|
| 345 |
+
wav2vec_model_path = self.config.audio.wav2vec_model
|
| 346 |
+
|
| 347 |
+
self.audio_processor = AudioProcessor(
|
| 348 |
+
16000,
|
| 349 |
+
25,
|
| 350 |
+
wav2vec_model_path,
|
| 351 |
+
"all",
|
| 352 |
+
audio_separator_model_file,
|
| 353 |
+
None, # not seperate
|
| 354 |
+
os.path.join(self.config.generation.output.dir, "vocals"),
|
| 355 |
+
device=device,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
def configure_text_model(self, device=get_device()):
|
| 359 |
+
self.text_encoder = T5EncoderModel(
|
| 360 |
+
text_len=self.config.dit.model.text_len,
|
| 361 |
+
dtype=torch.bfloat16,
|
| 362 |
+
device=device,
|
| 363 |
+
checkpoint_path=self.config.text.t5_checkpoint,
|
| 364 |
+
tokenizer_path=self.config.text.t5_tokenizer,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def configure_dit_fsdp_model(self):
|
| 369 |
+
from humo.models.wan_modules.model_humo import WanAttentionBlock
|
| 370 |
+
|
| 371 |
+
dit_blocks = (WanAttentionBlock,)
|
| 372 |
+
|
| 373 |
+
# Init model_shard_cpu_group for saving checkpoint with sharded state_dict.
|
| 374 |
+
init_model_shard_cpu_group(
|
| 375 |
+
self.config.dit.fsdp.sharding_strategy,
|
| 376 |
+
self.config.dit.fsdp.get("device_mesh", None),
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Assert that dit has wrappable blocks.
|
| 380 |
+
assert any(isinstance(m, dit_blocks) for m in self.dit.modules())
|
| 381 |
+
|
| 382 |
+
# Define wrap policy on all dit blocks.
|
| 383 |
+
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 384 |
+
return recurse or isinstance(module, dit_blocks)
|
| 385 |
+
|
| 386 |
+
# Configure FSDP settings.
|
| 387 |
+
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 388 |
+
self.config.dit.fsdp.sharding_strategy,
|
| 389 |
+
self.config.dit.fsdp.get("device_mesh", None),
|
| 390 |
+
)
|
| 391 |
+
settings = dict(
|
| 392 |
+
auto_wrap_policy=custom_auto_wrap_policy,
|
| 393 |
+
sharding_strategy=fsdp_strategy,
|
| 394 |
+
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 395 |
+
device_id=get_local_rank(),
|
| 396 |
+
use_orig_params=False,
|
| 397 |
+
sync_module_states=True,
|
| 398 |
+
forward_prefetch=True,
|
| 399 |
+
limit_all_gathers=False, # False for ZERO2.
|
| 400 |
+
mixed_precision=MixedPrecision(
|
| 401 |
+
param_dtype=torch.bfloat16,
|
| 402 |
+
reduce_dtype=torch.float32,
|
| 403 |
+
buffer_dtype=torch.float32,
|
| 404 |
+
),
|
| 405 |
+
device_mesh=device_mesh,
|
| 406 |
+
param_init_fn=meta_param_init_fn,
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Apply FSDP.
|
| 410 |
+
self.dit = FullyShardedDataParallel(self.dit, **settings)
|
| 411 |
+
# self.dit.to(get_device())
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def configure_text_fsdp_model(self):
|
| 415 |
+
# If FSDP is not enabled, put text_encoder to GPU and return.
|
| 416 |
+
if not self.config.text.fsdp.enabled:
|
| 417 |
+
self.text_encoder.to(get_device())
|
| 418 |
+
return
|
| 419 |
+
|
| 420 |
+
# from transformers.models.t5.modeling_t5 import T5Block
|
| 421 |
+
from humo.models.wan_modules.t5 import T5SelfAttention
|
| 422 |
+
|
| 423 |
+
text_blocks = (torch.nn.Embedding, T5SelfAttention)
|
| 424 |
+
# text_blocks_names = ("QWenBlock", "QWenModel") # QWen cannot be imported. Use str.
|
| 425 |
+
|
| 426 |
+
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 427 |
+
return (
|
| 428 |
+
recurse
|
| 429 |
+
or isinstance(module, text_blocks)
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Apply FSDP.
|
| 433 |
+
text_encoder_dtype = getattr(torch, self.config.text.dtype)
|
| 434 |
+
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 435 |
+
self.config.text.fsdp.sharding_strategy,
|
| 436 |
+
self.config.text.fsdp.get("device_mesh", None),
|
| 437 |
+
)
|
| 438 |
+
self.text_encoder = FullyShardedDataParallel(
|
| 439 |
+
module=self.text_encoder,
|
| 440 |
+
auto_wrap_policy=custom_auto_wrap_policy,
|
| 441 |
+
sharding_strategy=fsdp_strategy,
|
| 442 |
+
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 443 |
+
device_id=get_local_rank(),
|
| 444 |
+
use_orig_params=False,
|
| 445 |
+
sync_module_states=False,
|
| 446 |
+
forward_prefetch=True,
|
| 447 |
+
limit_all_gathers=True,
|
| 448 |
+
mixed_precision=MixedPrecision(
|
| 449 |
+
param_dtype=text_encoder_dtype,
|
| 450 |
+
reduce_dtype=text_encoder_dtype,
|
| 451 |
+
buffer_dtype=text_encoder_dtype,
|
| 452 |
+
),
|
| 453 |
+
device_mesh=device_mesh,
|
| 454 |
+
)
|
| 455 |
+
self.text_encoder.to(get_device()).requires_grad_(False)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def load_image_latent_ref_id(self, path: str, size, device):
|
| 459 |
+
# Load size.
|
| 460 |
+
h, w = size[1], size[0]
|
| 461 |
+
|
| 462 |
+
# Load image.
|
| 463 |
+
if len(path) > 1 and not isinstance(path, str):
|
| 464 |
+
ref_vae_latents = []
|
| 465 |
+
for image_path in path:
|
| 466 |
+
with Image.open(image_path) as img:
|
| 467 |
+
img = img.convert("RGB")
|
| 468 |
+
|
| 469 |
+
# Calculate the required size to keep aspect ratio and fill the rest with padding.
|
| 470 |
+
img_ratio = img.width / img.height
|
| 471 |
+
target_ratio = w / h
|
| 472 |
+
|
| 473 |
+
if img_ratio > target_ratio: # Image is wider than target
|
| 474 |
+
new_width = w
|
| 475 |
+
new_height = int(new_width / img_ratio)
|
| 476 |
+
else: # Image is taller than target
|
| 477 |
+
new_height = h
|
| 478 |
+
new_width = int(new_height * img_ratio)
|
| 479 |
+
|
| 480 |
+
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 481 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 482 |
+
|
| 483 |
+
# Create a new image with the target size and place the resized image in the center
|
| 484 |
+
delta_w = w - img.size[0]
|
| 485 |
+
delta_h = h - img.size[1]
|
| 486 |
+
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
|
| 487 |
+
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
|
| 488 |
+
|
| 489 |
+
# Transform to tensor and normalize.
|
| 490 |
+
transform = Compose(
|
| 491 |
+
[
|
| 492 |
+
ToTensor(),
|
| 493 |
+
Normalize(0.5, 0.5),
|
| 494 |
+
]
|
| 495 |
+
)
|
| 496 |
+
new_img = transform(new_img)
|
| 497 |
+
# img_vae_latent = self.vae_encode([new_img.unsqueeze(1)])[0]
|
| 498 |
+
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
|
| 499 |
+
ref_vae_latents.append(img_vae_latent[0])
|
| 500 |
+
|
| 501 |
+
return [torch.cat(ref_vae_latents, dim=1)]
|
| 502 |
+
else:
|
| 503 |
+
if not isinstance(path, str):
|
| 504 |
+
path = path[0]
|
| 505 |
+
with Image.open(path) as img:
|
| 506 |
+
img = img.convert("RGB")
|
| 507 |
+
|
| 508 |
+
# Calculate the required size to keep aspect ratio and fill the rest with padding.
|
| 509 |
+
img_ratio = img.width / img.height
|
| 510 |
+
target_ratio = w / h
|
| 511 |
+
|
| 512 |
+
if img_ratio > target_ratio: # Image is wider than target
|
| 513 |
+
new_width = w
|
| 514 |
+
new_height = int(new_width / img_ratio)
|
| 515 |
+
else: # Image is taller than target
|
| 516 |
+
new_height = h
|
| 517 |
+
new_width = int(new_height * img_ratio)
|
| 518 |
+
|
| 519 |
+
# img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 520 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 521 |
+
|
| 522 |
+
# Create a new image with the target size and place the resized image in the center
|
| 523 |
+
delta_w = w - img.size[0]
|
| 524 |
+
delta_h = h - img.size[1]
|
| 525 |
+
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
|
| 526 |
+
new_img = ImageOps.expand(img, padding, fill=(255, 255, 255))
|
| 527 |
+
|
| 528 |
+
# Transform to tensor and normalize.
|
| 529 |
+
transform = Compose(
|
| 530 |
+
[
|
| 531 |
+
ToTensor(),
|
| 532 |
+
Normalize(0.5, 0.5),
|
| 533 |
+
]
|
| 534 |
+
)
|
| 535 |
+
new_img = transform(new_img)
|
| 536 |
+
img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device)
|
| 537 |
+
|
| 538 |
+
# Vae encode.
|
| 539 |
+
return img_vae_latent
|
| 540 |
+
|
| 541 |
+
def get_audio_emb_window(self, audio_emb, frame_num, frame0_idx, audio_shift=2):
|
| 542 |
+
zero_audio_embed = torch.zeros((audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device)
|
| 543 |
+
zero_audio_embed_3 = torch.zeros((3, audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device) # device=audio_emb.device
|
| 544 |
+
iter_ = 1 + (frame_num - 1) // 4
|
| 545 |
+
audio_emb_wind = []
|
| 546 |
+
for lt_i in range(iter_):
|
| 547 |
+
if lt_i == 0:
|
| 548 |
+
st = frame0_idx + lt_i - 2
|
| 549 |
+
ed = frame0_idx + lt_i + 3
|
| 550 |
+
wind_feat = torch.stack([
|
| 551 |
+
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
|
| 552 |
+
for i in range(st, ed)
|
| 553 |
+
], dim=0)
|
| 554 |
+
wind_feat = torch.cat((zero_audio_embed_3, wind_feat), dim=0)
|
| 555 |
+
else:
|
| 556 |
+
st = frame0_idx + 1 + 4 * (lt_i - 1) - audio_shift
|
| 557 |
+
ed = frame0_idx + 1 + 4 * lt_i + audio_shift
|
| 558 |
+
wind_feat = torch.stack([
|
| 559 |
+
audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed
|
| 560 |
+
for i in range(st, ed)
|
| 561 |
+
], dim=0)
|
| 562 |
+
audio_emb_wind.append(wind_feat)
|
| 563 |
+
audio_emb_wind = torch.stack(audio_emb_wind, dim=0)
|
| 564 |
+
|
| 565 |
+
return audio_emb_wind, ed - audio_shift
|
| 566 |
+
|
| 567 |
+
def audio_emb_enc(self, audio_emb, wav_enc_type="whisper"):
|
| 568 |
+
if wav_enc_type == "wav2vec":
|
| 569 |
+
feat_merge = audio_emb
|
| 570 |
+
elif wav_enc_type == "whisper":
|
| 571 |
+
feat0 = linear_interpolation_fps(audio_emb[:, :, 0: 8].mean(dim=2), 50, 25)
|
| 572 |
+
feat1 = linear_interpolation_fps(audio_emb[:, :, 8: 16].mean(dim=2), 50, 25)
|
| 573 |
+
feat2 = linear_interpolation_fps(audio_emb[:, :, 16: 24].mean(dim=2), 50, 25)
|
| 574 |
+
feat3 = linear_interpolation_fps(audio_emb[:, :, 24: 32].mean(dim=2), 50, 25)
|
| 575 |
+
feat4 = linear_interpolation_fps(audio_emb[:, :, 32], 50, 25)
|
| 576 |
+
feat_merge = torch.stack([feat0, feat1, feat2, feat3, feat4], dim=2)[0]
|
| 577 |
+
else:
|
| 578 |
+
raise ValueError(f"Unsupported wav_enc_type: {wav_enc_type}")
|
| 579 |
+
|
| 580 |
+
return feat_merge
|
| 581 |
+
|
| 582 |
+
def parse_output(self, output):
|
| 583 |
+
latent = output[0]
|
| 584 |
+
mask = None
|
| 585 |
+
return latent, mask
|
| 586 |
+
|
| 587 |
+
def forward_tia(self, latents, timestep, t, step_change, arg_tia, arg_ti, arg_i, arg_null):
|
| 588 |
+
pos_tia, _ = self.parse_output(self.dit(
|
| 589 |
+
latents, t=timestep, **arg_tia
|
| 590 |
+
))
|
| 591 |
+
torch.cuda.empty_cache()
|
| 592 |
+
|
| 593 |
+
pos_ti, _ = self.parse_output(self.dit(
|
| 594 |
+
latents, t=timestep, **arg_ti
|
| 595 |
+
))
|
| 596 |
+
torch.cuda.empty_cache()
|
| 597 |
+
|
| 598 |
+
if t > step_change:
|
| 599 |
+
neg, _ = self.parse_output(self.dit(
|
| 600 |
+
latents, t=timestep, **arg_i
|
| 601 |
+
)) # img included in null, same with official Wan-2.1
|
| 602 |
+
torch.cuda.empty_cache()
|
| 603 |
+
|
| 604 |
+
noise_pred = self.config.generation.scale_a * (pos_tia - pos_ti) + \
|
| 605 |
+
self.config.generation.scale_t * (pos_ti - neg) + \
|
| 606 |
+
neg
|
| 607 |
+
else:
|
| 608 |
+
neg, _ = self.parse_output(self.dit(
|
| 609 |
+
latents, t=timestep, **arg_null
|
| 610 |
+
)) # img not included in null
|
| 611 |
+
torch.cuda.empty_cache()
|
| 612 |
+
|
| 613 |
+
noise_pred = self.config.generation.scale_a * (pos_tia - pos_ti) + \
|
| 614 |
+
(self.config.generation.scale_t - 2.0) * (pos_ti - neg) + \
|
| 615 |
+
neg
|
| 616 |
+
return noise_pred
|
| 617 |
+
|
| 618 |
+
def forward_ti(self, latents, timestep, t, step_change, arg_ti, arg_t, arg_i, arg_null):
|
| 619 |
+
# Positive with text+image (no audio)
|
| 620 |
+
pos_ti, _ = self.parse_output(self.dit(
|
| 621 |
+
latents, t=timestep, **arg_ti
|
| 622 |
+
))
|
| 623 |
+
torch.cuda.empty_cache()
|
| 624 |
+
|
| 625 |
+
# Positive with text only (no image, no audio)
|
| 626 |
+
pos_t, _ = self.parse_output(self.dit(
|
| 627 |
+
latents, t=timestep, **arg_t
|
| 628 |
+
))
|
| 629 |
+
torch.cuda.empty_cache()
|
| 630 |
+
|
| 631 |
+
# Negative branch: before step_change, don't include image in null; after, include image (like Wan-2.1)
|
| 632 |
+
if t > step_change:
|
| 633 |
+
neg, _ = self.parse_output(self.dit(
|
| 634 |
+
latents, t=timestep, **arg_i
|
| 635 |
+
)) # img included in null
|
| 636 |
+
else:
|
| 637 |
+
neg, _ = self.parse_output(self.dit(
|
| 638 |
+
latents, t=timestep, **arg_null
|
| 639 |
+
)) # img NOT included in null
|
| 640 |
+
torch.cuda.empty_cache()
|
| 641 |
+
|
| 642 |
+
# Guidance blend: replace "scale_a" below with "scale_i" if you add a separate image scale in config
|
| 643 |
+
noise_pred = self.config.generation.scale_a * (pos_ti - pos_t) + \
|
| 644 |
+
self.config.generation.scale_t * (pos_t - neg) + \
|
| 645 |
+
neg
|
| 646 |
+
return noise_pred
|
| 647 |
+
|
| 648 |
+
def forward_ta(self, latents, timestep, arg_ta, arg_t, arg_null):
|
| 649 |
+
pos_ta, _ = self.parse_output(self.dit(
|
| 650 |
+
latents, t=timestep, **arg_ta
|
| 651 |
+
))
|
| 652 |
+
torch.cuda.empty_cache()
|
| 653 |
+
|
| 654 |
+
pos_t, _ = self.parse_output(self.dit(
|
| 655 |
+
latents, t=timestep, **arg_t
|
| 656 |
+
))
|
| 657 |
+
torch.cuda.empty_cache()
|
| 658 |
+
|
| 659 |
+
neg, _ = self.parse_output(self.dit(
|
| 660 |
+
latents, t=timestep, **arg_null
|
| 661 |
+
))
|
| 662 |
+
torch.cuda.empty_cache()
|
| 663 |
+
|
| 664 |
+
noise_pred = self.config.generation.scale_a * (pos_ta - pos_t) + \
|
| 665 |
+
self.config.generation.scale_t * (pos_t - neg) + \
|
| 666 |
+
neg
|
| 667 |
+
return noise_pred
|
| 668 |
+
|
| 669 |
+
@torch.no_grad()
|
| 670 |
+
def inference(self,
|
| 671 |
+
input_prompt,
|
| 672 |
+
img_path,
|
| 673 |
+
audio_path,
|
| 674 |
+
size=(1280, 720),
|
| 675 |
+
frame_num=81,
|
| 676 |
+
shift=5.0,
|
| 677 |
+
sample_solver='unipc',
|
| 678 |
+
inference_mode='TIA',
|
| 679 |
+
sampling_steps=50,
|
| 680 |
+
n_prompt="",
|
| 681 |
+
seed=-1,
|
| 682 |
+
tea_cache_l1_thresh = 0.0,
|
| 683 |
+
device = get_device(),
|
| 684 |
+
):
|
| 685 |
+
|
| 686 |
+
# self.vae.model.to(device=device)
|
| 687 |
+
if img_path is not None:
|
| 688 |
+
latents_ref = self.load_image_latent_ref_id(img_path, size, device)
|
| 689 |
+
else:
|
| 690 |
+
latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)]
|
| 691 |
+
|
| 692 |
+
# self.vae.model.to(device="cpu")
|
| 693 |
+
|
| 694 |
+
latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref]
|
| 695 |
+
|
| 696 |
+
# audio
|
| 697 |
+
if audio_path is not None:
|
| 698 |
+
if self.config.generation.extract_audio_feat:
|
| 699 |
+
self.audio_processor.whisper.to(device=device)
|
| 700 |
+
audio_emb, audio_length = self.audio_processor.preprocess(audio_path)
|
| 701 |
+
self.audio_processor.whisper.to(device='cpu')
|
| 702 |
+
else:
|
| 703 |
+
audio_emb_path = audio_path.replace(".wav", ".pt")
|
| 704 |
+
audio_emb = torch.load(audio_emb_path).to(device=device)
|
| 705 |
+
audio_emb = self.audio_emb_enc(audio_emb, wav_enc_type="whisper")
|
| 706 |
+
self.logger.info("使用预先提取好的音频特征: %s", audio_emb_path)
|
| 707 |
+
else:
|
| 708 |
+
audio_emb = torch.zeros(frame_num, 5, 1280).to(device)
|
| 709 |
+
|
| 710 |
+
frame_num = frame_num if frame_num != -1 else audio_length
|
| 711 |
+
frame_num = 4 * ((frame_num - 1) // 4) + 1
|
| 712 |
+
audio_emb, _ = self.get_audio_emb_window(audio_emb, frame_num, frame0_idx=0)
|
| 713 |
+
zero_audio_pad = torch.zeros(latents_ref[0].shape[1], *audio_emb.shape[1:]).to(audio_emb.device)
|
| 714 |
+
audio_emb = torch.cat([audio_emb, zero_audio_pad], dim=0)
|
| 715 |
+
audio_emb = [audio_emb.to(device)]
|
| 716 |
+
audio_emb_neg = [torch.zeros_like(audio_emb[0])]
|
| 717 |
+
|
| 718 |
+
# preprocess
|
| 719 |
+
self.patch_size = self.config.dit.model.patch_size
|
| 720 |
+
F = frame_num
|
| 721 |
+
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + latents_ref[0].shape[1],
|
| 722 |
+
size[1] // self.vae_stride[1],
|
| 723 |
+
size[0] // self.vae_stride[2])
|
| 724 |
+
|
| 725 |
+
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
| 726 |
+
(self.patch_size[1] * self.patch_size[2]) *
|
| 727 |
+
target_shape[1] / self.sp_size) * self.sp_size
|
| 728 |
+
|
| 729 |
+
if n_prompt == "":
|
| 730 |
+
n_prompt = self.config.generation.sample_neg_prompt
|
| 731 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
| 732 |
+
seed_g = torch.Generator(device=device)
|
| 733 |
+
seed_g.manual_seed(seed)
|
| 734 |
+
|
| 735 |
+
# self.text_encoder.model.to(device)
|
| 736 |
+
context = self.text_encoder([input_prompt], device)
|
| 737 |
+
context_null = self.text_encoder([n_prompt], device)
|
| 738 |
+
# self.text_encoder.model.cpu()
|
| 739 |
+
|
| 740 |
+
noise = [
|
| 741 |
+
torch.randn(
|
| 742 |
+
target_shape[0],
|
| 743 |
+
target_shape[1], # - latents_ref[0].shape[1],
|
| 744 |
+
target_shape[2],
|
| 745 |
+
target_shape[3],
|
| 746 |
+
dtype=torch.float32,
|
| 747 |
+
device=device,
|
| 748 |
+
generator=seed_g)
|
| 749 |
+
]
|
| 750 |
+
|
| 751 |
+
@contextmanager
|
| 752 |
+
def noop_no_sync():
|
| 753 |
+
yield
|
| 754 |
+
|
| 755 |
+
no_sync = getattr(self.dit, 'no_sync', noop_no_sync)
|
| 756 |
+
step_change = self.config.generation.step_change # 980
|
| 757 |
+
|
| 758 |
+
# evaluation mode
|
| 759 |
+
with make_fp8_ctx(True), torch.autocast('cuda', dtype=torch.bfloat16), torch.no_grad(), no_sync():
|
| 760 |
+
|
| 761 |
+
if sample_solver == 'unipc':
|
| 762 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
| 763 |
+
num_train_timesteps=1000,
|
| 764 |
+
shift=1,
|
| 765 |
+
use_dynamic_shifting=False)
|
| 766 |
+
sample_scheduler.set_timesteps(
|
| 767 |
+
sampling_steps, device=device, shift=shift)
|
| 768 |
+
timesteps = sample_scheduler.timesteps
|
| 769 |
+
|
| 770 |
+
# sample videos
|
| 771 |
+
latents = noise
|
| 772 |
+
|
| 773 |
+
msk = torch.ones(4, target_shape[1], target_shape[2], target_shape[3], device=get_device())
|
| 774 |
+
msk[:,:-latents_ref[0].shape[1]] = 0
|
| 775 |
+
|
| 776 |
+
zero_vae = self.zero_vae[:, :(target_shape[1]-latents_ref[0].shape[1])].to(
|
| 777 |
+
device=get_device(), dtype=latents_ref[0].dtype)
|
| 778 |
+
y_c = torch.cat([
|
| 779 |
+
zero_vae,
|
| 780 |
+
latents_ref[0]
|
| 781 |
+
], dim=1)
|
| 782 |
+
y_c = [torch.concat([msk, y_c])]
|
| 783 |
+
|
| 784 |
+
y_null = self.zero_vae[:, :target_shape[1]].to(
|
| 785 |
+
device=get_device(), dtype=latents_ref[0].dtype)
|
| 786 |
+
y_null = [torch.concat([msk, y_null])]
|
| 787 |
+
|
| 788 |
+
tea_cache_l1_thresh = tea_cache_l1_thresh
|
| 789 |
+
tea_cache_model_id = "Wan2.1-T2V-14B"
|
| 790 |
+
|
| 791 |
+
arg_null = {'seq_len': seq_len, 'audio': audio_emb_neg, 'y': y_null, 'context': context_null, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 792 |
+
arg_t = {'seq_len': seq_len, 'audio': audio_emb_neg, 'y': y_null, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 793 |
+
arg_i = {'seq_len': seq_len, 'audio': audio_emb_neg, 'y': y_c, 'context': context_null, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 794 |
+
arg_ti = {'seq_len': seq_len, 'audio': audio_emb_neg, 'y': y_c, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 795 |
+
arg_ta = {'seq_len': seq_len, 'audio': audio_emb, 'y': y_null, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 796 |
+
arg_tia = {'seq_len': seq_len, 'audio': audio_emb, 'y': y_c, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 797 |
+
|
| 798 |
+
torch.cuda.empty_cache()
|
| 799 |
+
# self.dit.to(device=get_device())
|
| 800 |
+
for _, t in enumerate(tqdm(timesteps)):
|
| 801 |
+
timestep = [t]
|
| 802 |
+
timestep = torch.stack(timestep)
|
| 803 |
+
|
| 804 |
+
if inference_mode == "TIA":
|
| 805 |
+
noise_pred = self.forward_tia(latents, timestep, t, step_change,
|
| 806 |
+
arg_tia, arg_ti, arg_i, arg_null)
|
| 807 |
+
elif inference_mode == "TA":
|
| 808 |
+
noise_pred = self.forward_ta(latents, timestep, arg_ta, arg_t, arg_null)
|
| 809 |
+
elif inference_mode == "TI":
|
| 810 |
+
noise_pred = self.forward_ti(latents, timestep, t, step_change,
|
| 811 |
+
arg_ti, arg_t, arg_i, arg_null)
|
| 812 |
+
else:
|
| 813 |
+
raise ValueError(f"Unsupported generation mode: {self.config.generation.mode}")
|
| 814 |
+
|
| 815 |
+
temp_x0 = sample_scheduler.step(
|
| 816 |
+
noise_pred.unsqueeze(0),
|
| 817 |
+
t,
|
| 818 |
+
latents[0].unsqueeze(0),
|
| 819 |
+
return_dict=False,
|
| 820 |
+
generator=seed_g)[0]
|
| 821 |
+
latents = [temp_x0.squeeze(0)]
|
| 822 |
+
|
| 823 |
+
del timestep
|
| 824 |
+
torch.cuda.empty_cache()
|
| 825 |
+
|
| 826 |
+
x0 = latents
|
| 827 |
+
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
|
| 828 |
+
|
| 829 |
+
# if offload_model:
|
| 830 |
+
# self.dit.cpu()
|
| 831 |
+
|
| 832 |
+
torch.cuda.empty_cache()
|
| 833 |
+
# if get_local_rank() == 0:
|
| 834 |
+
# self.vae.model.to(device=device)
|
| 835 |
+
videos = self.vae.decode(x0)
|
| 836 |
+
# self.vae.model.to(device="cpu")
|
| 837 |
+
|
| 838 |
+
del noise, latents, noise_pred
|
| 839 |
+
del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null
|
| 840 |
+
del x0, temp_x0
|
| 841 |
+
del sample_scheduler
|
| 842 |
+
torch.cuda.empty_cache()
|
| 843 |
+
gc.collect()
|
| 844 |
+
torch.cuda.synchronize()
|
| 845 |
+
if dist.is_initialized():
|
| 846 |
+
dist.barrier()
|
| 847 |
+
|
| 848 |
+
return videos[0] # if get_local_rank() == 0 else None
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0):
|
| 852 |
+
|
| 853 |
+
video = self.inference(
|
| 854 |
+
prompt,
|
| 855 |
+
ref_img_path,
|
| 856 |
+
audio_path,
|
| 857 |
+
size=SIZE_CONFIGS[f"{width}*{height}"],
|
| 858 |
+
frame_num=frames,
|
| 859 |
+
shift=self.config.diffusion.timesteps.sampling.shift,
|
| 860 |
+
sample_solver='unipc',
|
| 861 |
+
sampling_steps=steps,
|
| 862 |
+
inference_mode = inference_mode,
|
| 863 |
+
tea_cache_l1_thresh = tea_cache_l1_thresh,
|
| 864 |
+
seed=seed
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
torch.cuda.empty_cache()
|
| 868 |
+
gc.collect()
|
| 869 |
+
|
| 870 |
+
# Save samples.
|
| 871 |
+
if get_sequence_parallel_rank() == 0:
|
| 872 |
+
pathname = self.save_sample(
|
| 873 |
+
sample=video,
|
| 874 |
+
audio_path=audio_path,
|
| 875 |
+
output_dir = output_dir,
|
| 876 |
+
filename=filename,
|
| 877 |
+
)
|
| 878 |
+
self.logger.info(f"Finished {filename}, saved to {pathname}.")
|
| 879 |
+
|
| 880 |
+
del video, prompt
|
| 881 |
+
torch.cuda.empty_cache()
|
| 882 |
+
gc.collect()
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str):
|
| 886 |
+
gen_config = self.config.generation
|
| 887 |
+
# Prepare file path.
|
| 888 |
+
extension = ".mp4" if sample.ndim == 4 else ".png"
|
| 889 |
+
filename += extension
|
| 890 |
+
pathname = os.path.join(output_dir, filename)
|
| 891 |
+
# Convert sample.
|
| 892 |
+
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).to("cpu", torch.uint8)
|
| 893 |
+
sample = rearrange(sample, "c t h w -> t h w c")
|
| 894 |
+
# Save file.
|
| 895 |
+
if sample.ndim == 4:
|
| 896 |
+
if audio_path is not None:
|
| 897 |
+
tensor_to_video(
|
| 898 |
+
sample.numpy(),
|
| 899 |
+
pathname,
|
| 900 |
+
audio_path,
|
| 901 |
+
fps=gen_config.fps)
|
| 902 |
+
else:
|
| 903 |
+
mediapy.write_video(
|
| 904 |
+
path=pathname,
|
| 905 |
+
images=sample.numpy(),
|
| 906 |
+
fps=gen_config.fps,
|
| 907 |
+
)
|
| 908 |
+
else:
|
| 909 |
+
raise ValueError
|
| 910 |
+
return pathname
|
| 911 |
+
|
| 912 |
+
|
| 913 |
+
def prepare_positive_prompts(self):
|
| 914 |
+
pos_prompts = self.config.generation.positive_prompt
|
| 915 |
+
if pos_prompts.endswith(".json"):
|
| 916 |
+
pos_prompts = prepare_json_dataset(pos_prompts)
|
| 917 |
+
else:
|
| 918 |
+
raise NotImplementedError
|
| 919 |
+
assert isinstance(pos_prompts, ListConfig)
|
| 920 |
+
|
| 921 |
+
return pos_prompts
|
| 922 |
+
|
| 923 |
+
class TeaCache:
|
| 924 |
+
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
|
| 925 |
+
self.num_inference_steps = num_inference_steps
|
| 926 |
+
self.step = 0
|
| 927 |
+
self.accumulated_rel_l1_distance = 0
|
| 928 |
+
self.previous_modulated_input = None
|
| 929 |
+
self.rel_l1_thresh = rel_l1_thresh
|
| 930 |
+
self.previous_residual = None
|
| 931 |
+
self.previous_hidden_states = None
|
| 932 |
+
|
| 933 |
+
self.coefficients_dict = {
|
| 934 |
+
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
|
| 935 |
+
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
|
| 936 |
+
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
|
| 937 |
+
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
|
| 938 |
+
}
|
| 939 |
+
if model_id not in self.coefficients_dict:
|
| 940 |
+
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
|
| 941 |
+
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
|
| 942 |
+
self.coefficients = self.coefficients_dict[model_id]
|
| 943 |
+
|
| 944 |
+
def check(self, dit, x, t_mod):
|
| 945 |
+
modulated_inp = t_mod.clone()
|
| 946 |
+
if self.step == 0 or self.step == self.num_inference_steps - 1:
|
| 947 |
+
should_calc = True
|
| 948 |
+
self.accumulated_rel_l1_distance = 0
|
| 949 |
+
else:
|
| 950 |
+
coefficients = self.coefficients
|
| 951 |
+
rescale_func = np.poly1d(coefficients)
|
| 952 |
+
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
| 953 |
+
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
| 954 |
+
should_calc = False
|
| 955 |
+
else:
|
| 956 |
+
should_calc = True
|
| 957 |
+
self.accumulated_rel_l1_distance = 0
|
| 958 |
+
self.previous_modulated_input = modulated_inp
|
| 959 |
+
self.step += 1
|
| 960 |
+
if self.step == self.num_inference_steps:
|
| 961 |
+
self.step = 0
|
| 962 |
+
if should_calc:
|
| 963 |
+
self.previous_hidden_states = x.clone()
|
| 964 |
+
return not should_calc
|
| 965 |
+
|
| 966 |
+
def store(self, hidden_states):
|
| 967 |
+
if self.previous_hidden_states is None:
|
| 968 |
+
return
|
| 969 |
+
self.previous_residual = hidden_states - self.previous_hidden_states
|
| 970 |
+
self.previous_hidden_states = None
|
| 971 |
+
|
| 972 |
+
def update(self, hidden_states):
|
| 973 |
+
hidden_states = hidden_states + self.previous_residual
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 974 |
return hidden_states
|