# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Codes adapted from [SeedVR] # https://github.com/ByteDance-Seed/SeedVR/tree/main/common/distributed """ Advanced distributed functions for sequence parallel. """ import torch from typing import Any, List, Optional, Tuple, Union import torch.distributed as dist from torch import Tensor from .basic import get_global_rank, get_world_size _DATA_PARALLEL_GROUP = None _SEQUENCE_PARALLEL_GROUP = None _SEQUENCE_PARALLEL_CPU_GROUP = None _CFG_PARALLEL_GROUP = None _CFG_PARALLEL_CPU_GROUP = None def get_data_parallel_group() -> Optional[dist.ProcessGroup]: """ Get data parallel process group. """ return _DATA_PARALLEL_GROUP def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]: """ Get sequence parallel process group. """ return _SEQUENCE_PARALLEL_GROUP def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]: """ Get sequence parallel CPU process group. """ return _SEQUENCE_PARALLEL_CPU_GROUP def get_data_parallel_rank() -> int: """ Get data parallel rank. """ group = get_data_parallel_group() return dist.get_rank(group) if group else get_global_rank() def get_data_parallel_world_size() -> int: """ Get data parallel world size. """ group = get_data_parallel_group() return dist.get_world_size(group) if group else get_world_size() def get_sequence_parallel_rank() -> int: """ Get sequence parallel rank. """ group = get_sequence_parallel_group() return dist.get_rank(group) if group else 0 def get_sequence_parallel_world_size() -> int: """ Get sequence parallel world size. """ group = get_sequence_parallel_group() return dist.get_world_size(group) if group else 1 def init_unified_parallel(unified_parallel_size): global _SEQUENCE_PARALLEL_GROUP global _SEQUENCE_PARALLEL_CPU_GROUP if unified_parallel_size == 1: return assert dist.is_initialized() world_size = dist.get_world_size() rank = dist.get_rank() assert world_size % unified_parallel_size == 0 data_parallel_size = world_size // unified_parallel_size for i in range(data_parallel_size): # build unified parallel group start_rank = i * unified_parallel_size end_rank = start_rank + unified_parallel_size unified_parallel_ranks = range(start_rank, end_rank) unified_parallel_group = dist.new_group(unified_parallel_ranks) unified_parallel_cpu_group = dist.new_group(unified_parallel_ranks, backend="gloo") if rank in unified_parallel_ranks: _SEQUENCE_PARALLEL_GROUP = unified_parallel_group _SEQUENCE_PARALLEL_CPU_GROUP = unified_parallel_cpu_group def get_unified_parallel_group(): global _SEQUENCE_PARALLEL_GROUP return _SEQUENCE_PARALLEL_GROUP def get_unified_parallel_cpu_group(): global _SEQUENCE_PARALLEL_CPU_GROUP return _SEQUENCE_PARALLEL_CPU_GROUP def get_unified_parallel_rank(): group = get_unified_parallel_group() return dist.get_rank(group) if group else 0 def get_unified_parallel_world_size(): group = get_unified_parallel_group() return dist.get_world_size(group) if group else 1 def is_unified_parallel_initialized(): group = get_unified_parallel_group() return group is not None def pad_tensor(x: Tensor, dim: int, padding_size: int): shape = list(x.shape) shape[dim] = padding_size pad = torch.zeros(shape, dtype=x.dtype, device=x.device) return torch.cat([x, pad], dim=dim) class Slice(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int, scale_grad: bool) -> Tensor: ctx.group = group ctx.rank = dist.get_rank(group) seq_world_size = dist.get_world_size(group) ctx.seq_world_size = seq_world_size ctx.dim = dim ctx.scale_grad = scale_grad dim_size = local_input.shape[dim] if not ctx.group: return local_input return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous() @staticmethod def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]: if not ctx.group: return None, grad_output, None, None dim_size = list(grad_output.size()) split_size = dim_size[0] dim_size[0] = dim_size[0] * ctx.seq_world_size output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device()) dist.all_gather_into_tensor(output, grad_output, group=ctx.group) if ctx.scale_grad: output = output / ctx.seq_world_size return (None, torch.cat(output.split(split_size), dim=ctx.dim), None, None) def gather_outputs( x: Tensor, gather_dim: int, padding_dim: Optional[int] = None, unpad_dim_size: Optional[int] = None, scale_grad=True, ): """ A func to gather the outputs for the model result in sequence parallel """ group = get_unified_parallel_group() if not group: return x x = Gather.apply(group, x, gather_dim, scale_grad) if padding_dim is not None: x = unpadding_tensor_for_seqeunce_parallel(x, padding_dim, unpad_dim_size) return x def unpadding_tensor_for_seqeunce_parallel(x: Tensor, dim: int, unpadded_dim_size: int): """ A func to remove the padding part of the tensor based on its original shape """ group = get_unified_parallel_group() if group is None: return x sp_world = get_unified_parallel_world_size() if unpadded_dim_size % sp_world == 0: return x padding_size = sp_world - (unpadded_dim_size % sp_world) assert (padding_size + unpadded_dim_size) % sp_world == 0 return unpad_tensor(x, dim=dim, padding_size=padding_size) def gather_seq_scatter_heads_qkv( qkv_tensor: Tensor, seq_dim: int, unpadded_dim_size: Optional[int] = None, restore_shape: bool = True, async_op: bool = False, ): """ A func to sync splited qkv tensor qkv_tensor: the tensor we want to do alltoall with. The last dim must be the projection_idx, which we will split into 3 part. After spliting, the gather idx will be projecttion_idx + 1 seq_dim: gather_dim for all2all comm restore_shape: if True, output will has the same shape length as input """ group = get_unified_parallel_group() if not group: return qkv_tensor world = get_unified_parallel_world_size() orig_shape = qkv_tensor.shape scatter_dim = qkv_tensor.dim() bef_all2all_shape = list(orig_shape) qkv_proj_dim = bef_all2all_shape[-1] bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3] qkv_tensor = qkv_tensor.view(bef_all2all_shape) if async_op: return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op) else: qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op) if restore_shape: out_shape = list(orig_shape) out_shape[seq_dim] *= world out_shape[-1] = qkv_proj_dim // world qkv_tensor = qkv_tensor.view(out_shape) # remove padding if unpadded_dim_size and unpadded_dim_size % world != 0: padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size) return qkv_tensor def gather_seq_scatter_double_head( qkv_tensor: Tensor, seq_dim: int, unpadded_dim_size: Optional[int] = None, restore_shape: bool = True, async_op: bool = False, ): """ A func to sync splited qkv tensor qkv_tensor: the tensor we want to do alltoall with. The last dim must be the projection_idx, which we will split into 3 part. After spliting, the gather idx will be projecttion_idx + 1 seq_dim: gather_dim for all2all comm restore_shape: if True, output will has the same shape length as input """ qkv1_shape = qkv_tensor.shape group = get_unified_parallel_group() if not group: return qkv_tensor world = get_unified_parallel_world_size() orig_shape = qkv_tensor.shape scatter_dim = qkv_tensor.dim() bef_all2all_shape = list(orig_shape) qkv_proj_dim = bef_all2all_shape[-1] bef_all2all_shape = bef_all2all_shape[:-1] + [2, qkv_proj_dim // 2] qkv_tensor = qkv_tensor.view(bef_all2all_shape) qkv2_shape = qkv_tensor.shape if async_op: return SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op) else: qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, async_op) qkv3_shape = qkv_tensor.shape if restore_shape: out_shape = list(orig_shape) out_shape[seq_dim] *= world out_shape[-1] = qkv_proj_dim // world qkv_tensor = qkv_tensor.view(out_shape) qkv4_shape = qkv_tensor.shape # remove padding if unpadded_dim_size and unpadded_dim_size % world != 0: padding_size = qkv_tensor.size(seq_dim) - unpadded_dim_size qkv_tensor = unpad_tensor(qkv_tensor, seq_dim, padding_size) qkv5_shape = qkv_tensor.shape return qkv_tensor class SeqAllToAll(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, local_input: Tensor, scatter_dim: int, gather_dim: int, async_op: bool, ) -> Tensor: ctx.group = group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.async_op = async_op return all_to_all_tensor(local_input, scatter_dim, gather_dim, group, async_op) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: if ctx.async_op: input_t = torch.cat(grad_output[1:], dim=ctx.gather_dim).contiguous() else: input_t = grad_output[0] return ( None, all_to_all_tensor(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group, False), None, None, None, None, ) def all_to_all_tensor( x: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False, ): if scatter_dim <= 1 and gather_dim <= 1: return _all_to_all_single(x, scatter_dim, gather_dim, group, async_op) else: return _all_to_all(x, scatter_dim, gather_dim, group, async_op) # 走这里 def _all_to_all( local_input: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False, ): seq_world_size = dist.get_world_size(group) input_list = [t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)] output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)] comm = dist.all_to_all(output_list, input_list, group=group, async_op=async_op) if async_op: def wait(): comm.wait() return torch.cat(output_list, dim=gather_dim).contiguous() return wait return torch.cat(output_list, dim=gather_dim).contiguous() def _all_to_all_single(x: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False): """ A function to do all-to-all on the first two dim """ sp_world_size = dist.get_world_size(group) assert scatter_dim <= 1, "scatter_dim must be 0 or 1 when using all_to_all_single!" assert gather_dim <= 1, "gather_dim must be 0 or 1 when using all_to_all_single!" if scatter_dim != 0: gather_dim_bef = x.shape[gather_dim] scatter_dim_bef = x.shape[scatter_dim] x = ( x.reshape([gather_dim_bef, sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:])) .transpose(0, 1) .reshape([gather_dim_bef * sp_world_size, scatter_dim_bef // sp_world_size] + list(x.shape[2:])) .contiguous() ) output = torch.empty_like(x) comm = dist.all_to_all_single(output, x.contiguous(), group=group, async_op=async_op) if async_op: def wait(): comm.wait() if scatter_dim == 0: return torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim) else: return output return wait if scatter_dim == 0: output = torch.cat(output.split(x.size(0) // sp_world_size), dim=gather_dim) return output def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor: """ A func to sync attention result with alltoall in sequence parallel """ group = get_unified_parallel_group() if not group: return x dim_size = x.size(seq_dim) sp_world = get_unified_parallel_world_size() if dim_size % sp_world != 0: padding_size = sp_world - (dim_size % sp_world) x = pad_tensor(x, seq_dim, padding_size) return SeqAllToAll.apply(group, x, seq_dim, head_dim, False) def unpad_tensor(x: Tensor, dim: int, padding_size: int): slc = [slice(None)] * len(x.shape) slc[dim] = slice(0, -padding_size) return x[slc] class Gather(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int, grad_scale: Optional[bool] = False, ) -> Tensor: ctx.group = group ctx.rank = dist.get_rank(group) ctx.dim = dim ctx.grad_scale = grad_scale seq_world_size = dist.get_world_size(group) ctx.seq_world_size = seq_world_size dim_size = list(local_input.size()) split_size = dim_size[0] ctx.part_size = dim_size[dim] dim_size[0] = dim_size[0] * seq_world_size output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device()) dist.all_gather_into_tensor(output, local_input.contiguous(), group=ctx.group) return torch.cat(output.split(split_size), dim=dim) @staticmethod def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]: if ctx.grad_scale: grad_output = grad_output * ctx.seq_world_size return ( None, grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(), None, None, ) def slice_tensor(tensor, dim, start, end): indices = slice(start, end) return tensor[(slice(None),) * dim + (indices,)] def init_model_shard_cpu_group(sharding_strategy: str, device_mesh: Optional[Tuple] = None): """ Initialize CPU process group of model sharding. """ global _MODEL_SHARD_CPU_GROUP assert dist.is_initialized() world_size = dist.get_world_size() rank = dist.get_rank() if device_mesh is not None: num_shards_per_group = device_mesh[1] elif "HYBRID" in sharding_strategy: num_shards_per_group = min(8, world_size) else: num_shards_per_group = world_size num_groups = world_size // num_shards_per_group for i in range(num_groups): start_rank = i * num_shards_per_group end_rank = (i + 1) * num_shards_per_group ranks = range(start_rank, end_rank) cpu_group = dist.new_group(ranks, backend="gloo") if rank in ranks: _MODEL_SHARD_CPU_GROUP = cpu_group