# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Inference codes adapted from [SeedVR] # https://github.com/ByteDance-Seed/SeedVR/blob/main/projects/inference_seedvr2_7b.py import math import os import gc import random import sys import mediapy import numpy as np import torch import torch.distributed as dist from omegaconf import DictConfig, ListConfig, OmegaConf from einops import rearrange from omegaconf import OmegaConf from PIL import Image, ImageOps from torchvision.transforms import ToTensor from tqdm import tqdm from torch.distributed.device_mesh import init_device_mesh from torch.distributed.fsdp import ( BackwardPrefetch, FullyShardedDataParallel, MixedPrecision, ShardingStrategy, ) from common.distributed import ( get_device, get_global_rank, get_local_rank, meta_param_init_fn, meta_non_persistent_buffer_init_fn, init_torch, ) from common.distributed.advanced import ( init_unified_parallel, get_unified_parallel_world_size, get_sequence_parallel_rank, init_model_shard_cpu_group, ) from common.logger import get_logger from common.config import create_object from common.distributed import get_device, get_global_rank from torchvision.transforms import Compose, Normalize, ToTensor from humo.models.wan_modules.t5 import T5EncoderModel from humo.models.wan_modules.vae import WanVAE from humo.models.utils.utils import tensor_to_video, prepare_json_dataset from contextlib import contextmanager import torch.cuda.amp as amp from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from humo.utils.audio_processor_whisper import AudioProcessor from humo.utils.wav2vec import linear_interpolation_fps from torchao.quantization import quantize_ import torch._dynamo as dynamo dynamo.config.capture_scalar_outputs = True torch.set_float32_matmul_precision("high") import torch import torch.nn as nn import transformer_engine.pytorch as te image_transform = Compose([ ToTensor(), Normalize(mean=0.5, std=0.5), ]) SIZE_CONFIGS = { '720*1280': (720, 1280), '1280*720': (1280, 720), '480*832': (480, 832), '832*480': (832, 480), '1024*1024': (1024, 1024), } def clever_format(nums, format="%.2f"): from typing import Iterable if not isinstance(nums, Iterable): nums = [nums] clever_nums = [] for num in nums: if num > 1e12: clever_nums.append(format % (num / 1e12) + "T") elif num > 1e9: clever_nums.append(format % (num / 1e9) + "G") elif num > 1e6: clever_nums.append(format % (num / 1e6) + "M") elif num > 1e3: clever_nums.append(format % (num / 1e3) + "K") else: clever_nums.append(format % num + "B") clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,) return clever_nums # --- put near your imports --- import torch import torch.nn as nn import contextlib import transformer_engine.pytorch as te # FP8 autocast compatibility for different TE versions try: # Preferred modern API from transformer_engine.pytorch import fp8_autocast try: # Newer TE: use recipe-based API from transformer_engine.common.recipe import DelayedScaling, Format def make_fp8_ctx(enabled: bool = True): if not enabled: return contextlib.nullcontext() fp8_recipe = DelayedScaling(fp8_format=Format.E4M3) # E4M3 format return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe) except Exception: # Very old variant that might still accept fp8_format directly def make_fp8_ctx(enabled: bool = True): # If TE doesn't have FP8Format, just no-op if not hasattr(te, "FP8Format"): return contextlib.nullcontext() return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3) except Exception: # TE not present or totally incompatible — no-op def make_fp8_ctx(enabled: bool = True): return contextlib.nullcontext() # TE sometimes exposes Linear at different paths; this normalizes it. try: TELinear = te.Linear except AttributeError: # very old layouts from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore # --- near imports --- import torch import torch.nn as nn import transformer_engine.pytorch as te try: TELinear = te.Linear except AttributeError: from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore import torch import torch.nn as nn import transformer_engine.pytorch as te try: TELinear = te.Linear except AttributeError: from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore def _default_te_allow(fullname: str, lin: nn.Linear) -> bool: """ Allow TE only where it's shape-safe & beneficial. Skip small/special layers (time/timestep/pos embeds, heads). Enforce multiples of 16 for in/out features (FP8 kernel friendly). Also skip very small projections likely to see M=1. """ blocked_keywords = ( "time_embedding", "timestep", "time_embed", "time_projection", "pos_embedding", "pos_embed", "to_logits", "logits", "final_proj", "proj_out", "output_projection", ) if any(k in fullname for k in blocked_keywords): return False # TE FP8 kernels like K, N divisible by 16 if lin.in_features % 16 != 0 or lin.out_features % 16 != 0: return False # Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs if lin.in_features < 512 or lin.out_features < 512: return False # Whitelist: only convert inside transformer blocks if you know their prefix # This further reduces risk of catching special heads elsewhere. allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn") if not any(tok in fullname for tok in allowed_context): return False return True @torch.no_grad() def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""): for name, child in list(module.named_children()): full = f"{_prefix}.{name}" if _prefix else name convert_linears_to_te_fp8(child, allow_pred, full) if isinstance(child, nn.Linear): if allow_pred is not None and not allow_pred(full, child): continue te_lin = TELinear( in_features=child.in_features, out_features=child.out_features, bias=(child.bias is not None), params_dtype=torch.bfloat16, ).to(child.weight.device) te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype)) if child.bias is not None: te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype)) setattr(module, name, te_lin) return module class Generator(): def __init__(self, config: DictConfig): self.config = config.copy() OmegaConf.set_readonly(self.config, True) self.logger = get_logger(self.__class__.__name__) # init_torch(cudnn_benchmark=False) self.configure_models() def entrypoint(self): self.inference_loop() def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config): device_mesh = None fsdp_strategy = ShardingStrategy[sharding_strategy] if ( fsdp_strategy in [ShardingStrategy._HYBRID_SHARD_ZERO2, ShardingStrategy.HYBRID_SHARD] and device_mesh_config is not None ): device_mesh = init_device_mesh("cuda", tuple(device_mesh_config)) return device_mesh, fsdp_strategy def configure_models(self): self.configure_dit_model(device="cuda") self.dit.eval().to("cuda") convert_linears_to_te_fp8(self.dit) self.dit = torch.compile(self.dit, ) self.configure_vae_model(device="cuda") if self.config.generation.get('extract_audio_feat', False): self.configure_wav2vec(device="cpu") self.configure_text_model(device="cuda") # # Initialize fsdp. # self.configure_dit_fsdp_model() # self.configure_text_fsdp_model() # quantize_(self.text_encoder, Int8WeightOnlyConfig()) # quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig()) def configure_dit_model(self, device=get_device()): init_unified_parallel(self.config.dit.sp_size) self.sp_size = get_unified_parallel_world_size() # Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet). init_device = "meta" with torch.device(init_device): self.dit = create_object(self.config.dit.model) self.dit = self.dit.to(dtype=torch.bfloat16) # or: self.dit.bfloat16() self.logger.info(f"Load DiT model on {init_device}.") self.dit.eval().requires_grad_(False) # Load dit checkpoint. path = self.config.dit.checkpoint_dir def _cast_state_dict_to_bf16(state): for k, v in state.items(): if isinstance(v, torch.Tensor) and v.is_floating_point(): state[k] = v.to(dtype=torch.bfloat16, copy=False) return state if path.endswith(".pth"): # Load to CPU first; we’ll move the model later. state = torch.load(path, map_location="cpu", mmap=True) state = _cast_state_dict_to_bf16(state) missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True) self.logger.info( f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}" ) else: from safetensors.torch import load_file import json def load_custom_sharded_weights(model_dir, base_name): index_path = f"{model_dir}/{base_name}.safetensors.index.json" with open(index_path, "r") as f: index = json.load(f) weight_map = index["weight_map"] shard_files = set(weight_map.values()) state_dict = {} for shard_file in shard_files: shard_path = f"{model_dir}/{shard_file}" # Load on CPU, then cast to bf16; we’ll move the whole module later. shard_state = load_file(shard_path, device="cpu") shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v) for k, v in shard_state.items()} state_dict.update(shard_state) return state_dict state = load_custom_sharded_weights(path, 'humo') self.dit.load_state_dict(state, strict=False, assign=True) self.dit = meta_non_persistent_buffer_init_fn(self.dit) target_device = get_device() if device in [get_device(), "cuda"] else device self.dit.to(target_device) # dtype already bf16 # Print model size. params = sum(p.numel() for p in self.dit.parameters()) self.logger.info( f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}" ) def configure_vae_model(self, device=get_device()): self.vae_stride = self.config.vae.vae_stride self.vae = WanVAE( vae_pth=self.config.vae.checkpoint, device=device) if self.config.generation.height == 480: self.zero_vae = torch.load(self.config.dit.zero_vae_path) elif self.config.generation.height == 720: self.zero_vae = torch.load(self.config.dit.zero_vae_720p_path) else: raise ValueError(f"Unsupported height {self.config.generation.height} for zero-vae.") def configure_wav2vec(self, device=get_device()): audio_separator_model_file = self.config.audio.vocal_separator wav2vec_model_path = self.config.audio.wav2vec_model self.audio_processor = AudioProcessor( 16000, 25, wav2vec_model_path, "all", audio_separator_model_file, None, # not seperate os.path.join(self.config.generation.output.dir, "vocals"), device=device, ) def configure_text_model(self, device=get_device()): self.text_encoder = T5EncoderModel( text_len=self.config.dit.model.text_len, dtype=torch.bfloat16, device=device, checkpoint_path=self.config.text.t5_checkpoint, tokenizer_path=self.config.text.t5_tokenizer, ) def configure_dit_fsdp_model(self): from humo.models.wan_modules.model_humo import WanAttentionBlock dit_blocks = (WanAttentionBlock,) # Init model_shard_cpu_group for saving checkpoint with sharded state_dict. init_model_shard_cpu_group( self.config.dit.fsdp.sharding_strategy, self.config.dit.fsdp.get("device_mesh", None), ) # Assert that dit has wrappable blocks. assert any(isinstance(m, dit_blocks) for m in self.dit.modules()) # Define wrap policy on all dit blocks. def custom_auto_wrap_policy(module, recurse, *args, **kwargs): return recurse or isinstance(module, dit_blocks) # Configure FSDP settings. device_mesh, fsdp_strategy = self.get_fsdp_sharding_config( self.config.dit.fsdp.sharding_strategy, self.config.dit.fsdp.get("device_mesh", None), ) settings = dict( auto_wrap_policy=custom_auto_wrap_policy, sharding_strategy=fsdp_strategy, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, device_id=get_local_rank(), use_orig_params=False, sync_module_states=True, forward_prefetch=True, limit_all_gathers=False, # False for ZERO2. mixed_precision=MixedPrecision( param_dtype=torch.bfloat16, reduce_dtype=torch.float32, buffer_dtype=torch.float32, ), device_mesh=device_mesh, param_init_fn=meta_param_init_fn, ) # Apply FSDP. self.dit = FullyShardedDataParallel(self.dit, **settings) # self.dit.to(get_device()) def configure_text_fsdp_model(self): # If FSDP is not enabled, put text_encoder to GPU and return. if not self.config.text.fsdp.enabled: self.text_encoder.to(get_device()) return # from transformers.models.t5.modeling_t5 import T5Block from humo.models.wan_modules.t5 import T5SelfAttention text_blocks = (torch.nn.Embedding, T5SelfAttention) # text_blocks_names = ("QWenBlock", "QWenModel") # QWen cannot be imported. Use str. def custom_auto_wrap_policy(module, recurse, *args, **kwargs): return ( recurse or isinstance(module, text_blocks) ) # Apply FSDP. text_encoder_dtype = getattr(torch, self.config.text.dtype) device_mesh, fsdp_strategy = self.get_fsdp_sharding_config( self.config.text.fsdp.sharding_strategy, self.config.text.fsdp.get("device_mesh", None), ) self.text_encoder = FullyShardedDataParallel( module=self.text_encoder, auto_wrap_policy=custom_auto_wrap_policy, sharding_strategy=fsdp_strategy, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, device_id=get_local_rank(), use_orig_params=False, sync_module_states=False, forward_prefetch=True, limit_all_gathers=True, mixed_precision=MixedPrecision( param_dtype=text_encoder_dtype, reduce_dtype=text_encoder_dtype, buffer_dtype=text_encoder_dtype, ), device_mesh=device_mesh, ) self.text_encoder.to(get_device()).requires_grad_(False) def load_image_latent_ref_id(self, path: str, size, device): # Load size. h, w = size[1], size[0] # Load image. if len(path) > 1 and not isinstance(path, str): ref_vae_latents = [] for image_path in path: with Image.open(image_path) as img: img = img.convert("RGB") # Calculate the required size to keep aspect ratio and fill the rest with padding. img_ratio = img.width / img.height target_ratio = w / h if img_ratio > target_ratio: # Image is wider than target new_width = w new_height = int(new_width / img_ratio) else: # Image is taller than target new_height = h new_width = int(new_height * img_ratio) # img = img.resize((new_width, new_height), Image.ANTIALIAS) img = img.resize((new_width, new_height), Image.Resampling.LANCZOS) # Create a new image with the target size and place the resized image in the center delta_w = w - img.size[0] delta_h = h - img.size[1] padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2)) new_img = ImageOps.expand(img, padding, fill=(255, 255, 255)) # Transform to tensor and normalize. transform = Compose( [ ToTensor(), Normalize(0.5, 0.5), ] ) new_img = transform(new_img) # img_vae_latent = self.vae_encode([new_img.unsqueeze(1)])[0] img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device) ref_vae_latents.append(img_vae_latent[0]) return [torch.cat(ref_vae_latents, dim=1)] else: if not isinstance(path, str): path = path[0] with Image.open(path) as img: img = img.convert("RGB") # Calculate the required size to keep aspect ratio and fill the rest with padding. img_ratio = img.width / img.height target_ratio = w / h if img_ratio > target_ratio: # Image is wider than target new_width = w new_height = int(new_width / img_ratio) else: # Image is taller than target new_height = h new_width = int(new_height * img_ratio) # img = img.resize((new_width, new_height), Image.ANTIALIAS) img = img.resize((new_width, new_height), Image.Resampling.LANCZOS) # Create a new image with the target size and place the resized image in the center delta_w = w - img.size[0] delta_h = h - img.size[1] padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2)) new_img = ImageOps.expand(img, padding, fill=(255, 255, 255)) # Transform to tensor and normalize. transform = Compose( [ ToTensor(), Normalize(0.5, 0.5), ] ) new_img = transform(new_img) img_vae_latent = self.vae.encode([new_img.unsqueeze(1)], device) # Vae encode. return img_vae_latent def get_audio_emb_window(self, audio_emb, frame_num, frame0_idx, audio_shift=2): zero_audio_embed = torch.zeros((audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device) zero_audio_embed_3 = torch.zeros((3, audio_emb.shape[1], audio_emb.shape[2]), dtype=audio_emb.dtype, device=audio_emb.device) # device=audio_emb.device iter_ = 1 + (frame_num - 1) // 4 audio_emb_wind = [] for lt_i in range(iter_): if lt_i == 0: st = frame0_idx + lt_i - 2 ed = frame0_idx + lt_i + 3 wind_feat = torch.stack([ audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed for i in range(st, ed) ], dim=0) wind_feat = torch.cat((zero_audio_embed_3, wind_feat), dim=0) else: st = frame0_idx + 1 + 4 * (lt_i - 1) - audio_shift ed = frame0_idx + 1 + 4 * lt_i + audio_shift wind_feat = torch.stack([ audio_emb[i] if (0 <= i < audio_emb.shape[0]) else zero_audio_embed for i in range(st, ed) ], dim=0) audio_emb_wind.append(wind_feat) audio_emb_wind = torch.stack(audio_emb_wind, dim=0) return audio_emb_wind, ed - audio_shift def audio_emb_enc(self, audio_emb, wav_enc_type="whisper"): if wav_enc_type == "wav2vec": feat_merge = audio_emb elif wav_enc_type == "whisper": feat0 = linear_interpolation_fps(audio_emb[:, :, 0: 8].mean(dim=2), 50, 25) feat1 = linear_interpolation_fps(audio_emb[:, :, 8: 16].mean(dim=2), 50, 25) feat2 = linear_interpolation_fps(audio_emb[:, :, 16: 24].mean(dim=2), 50, 25) feat3 = linear_interpolation_fps(audio_emb[:, :, 24: 32].mean(dim=2), 50, 25) feat4 = linear_interpolation_fps(audio_emb[:, :, 32], 50, 25) feat_merge = torch.stack([feat0, feat1, feat2, feat3, feat4], dim=2)[0] else: raise ValueError(f"Unsupported wav_enc_type: {wav_enc_type}") return feat_merge def forward_tia(self, latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null): neg = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null )[0] pos_t = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t )[0] pos_ta = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta )[0] pos_tia = self.dit( [torch.cat([latent[:,:-latent_ref.shape[1]], latent_ref], dim=1) for latent, latent_ref in zip(latents, latents_ref)], t=timestep, **arg_ta )[0] noise_pred = self.config.generation.scale_i * (pos_tia - pos_ta) + \ self.config.generation.scale_a * (pos_ta - pos_t) + \ self.config.generation.scale_t * (pos_t - neg) + \ neg return noise_pred def forward_ta(self, latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null): neg = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_null )[0] pos_t = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_t )[0] pos_ta = self.dit( [torch.cat([latent[:,:-latent_ref_neg.shape[1]], latent_ref_neg], dim=1) for latent, latent_ref_neg in zip(latents, latents_ref_neg)], t=timestep, **arg_ta )[0] noise_pred = self.config.generation.scale_a * (pos_ta - pos_t) + \ self.config.generation.scale_t * (pos_t - neg) + \ neg return noise_pred @torch.no_grad() def inference(self, input_prompt, img_path, audio_path, size=(1280, 720), frame_num=81, shift=5.0, sample_solver='unipc', inference_mode='TIA', sampling_steps=50, n_prompt="", seed=-1, tea_cache_l1_thresh = 0.0, device = get_device(), ): # self.vae.model.to(device=device) if img_path is not None: latents_ref = self.load_image_latent_ref_id(img_path, size, device) else: latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)] # self.vae.model.to(device="cpu") latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref] # audio if audio_path is not None: if self.config.generation.extract_audio_feat: self.audio_processor.whisper.to(device=device) audio_emb, audio_length = self.audio_processor.preprocess(audio_path) self.audio_processor.whisper.to(device='cpu') else: audio_emb_path = audio_path.replace(".wav", ".pt") audio_emb = torch.load(audio_emb_path).to(device=device) audio_emb = self.audio_emb_enc(audio_emb, wav_enc_type="whisper") self.logger.info("使用预先提取好的音频特征: %s", audio_emb_path) else: audio_emb = torch.zeros(frame_num, 5, 1280).to(device) frame_num = frame_num if frame_num != -1 else audio_length frame_num = 4 * ((frame_num - 1) // 4) + 1 audio_emb, _ = self.get_audio_emb_window(audio_emb, frame_num, frame0_idx=0) zero_audio_pad = torch.zeros(latents_ref[0].shape[1], *audio_emb.shape[1:]).to(audio_emb.device) audio_emb = torch.cat([audio_emb, zero_audio_pad], dim=0) audio_emb = [audio_emb.to(device)] audio_emb_neg = [torch.zeros_like(audio_emb[0])] # preprocess self.patch_size = self.config.dit.model.patch_size F = frame_num target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + latents_ref[0].shape[1], size[1] // self.vae_stride[1], size[0] // self.vae_stride[2]) seq_len = math.ceil((target_shape[2] * target_shape[3]) / (self.patch_size[1] * self.patch_size[2]) * target_shape[1] / self.sp_size) * self.sp_size if n_prompt == "": n_prompt = self.config.generation.sample_neg_prompt seed = seed if seed >= 0 else random.randint(0, sys.maxsize) seed_g = torch.Generator(device=device) seed_g.manual_seed(seed) # self.text_encoder.model.to(device) context = self.text_encoder([input_prompt], device) context_null = self.text_encoder([n_prompt], device) # self.text_encoder.model.cpu() noise = [ torch.randn( target_shape[0], target_shape[1], # - latents_ref[0].shape[1], target_shape[2], target_shape[3], dtype=torch.float32, device=device, generator=seed_g) ] @contextmanager def noop_no_sync(): yield no_sync = getattr(self.dit, 'no_sync', noop_no_sync) # evaluation mode with make_fp8_ctx(True), torch.autocast('cuda', dtype=torch.bfloat16), torch.no_grad(), no_sync(): if sample_solver == 'unipc': sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=1000, shift=1, use_dynamic_shifting=False) sample_scheduler.set_timesteps( sampling_steps, device=device, shift=shift) timesteps = sample_scheduler.timesteps # sample videos latents = noise # referene image在下面的输入中手动指定, 不在arg中指定 arg_ta = {'context': context, 'seq_len': seq_len, 'audio': audio_emb} arg_t = {'context': context, 'seq_len': seq_len, 'audio': audio_emb_neg} arg_null = {'context': context_null, 'seq_len': seq_len, 'audio': audio_emb_neg} torch.cuda.empty_cache() for _, t in enumerate(tqdm(timesteps)): timestep = [t] timestep = torch.stack(timestep) if self.config.generation.mode == "TIA": noise_pred = self.forward_tia(latents, latents_ref, latents_ref_neg, timestep, arg_t, arg_ta, arg_null) elif self.config.generation.mode == "TA": noise_pred = self.forward_ta(latents, latents_ref_neg, timestep, arg_t, arg_ta, arg_null) else: raise ValueError(f"Unsupported generation mode: {self.config.generation.mode}") temp_x0 = sample_scheduler.step( noise_pred.unsqueeze(0), t, latents[0].unsqueeze(0), return_dict=False, generator=seed_g)[0] latents = [temp_x0.squeeze(0)] del timestep torch.cuda.empty_cache() x0 = latents x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0] # if offload_model: # self.dit.cpu() torch.cuda.empty_cache() # if get_local_rank() == 0: # self.vae.model.to(device=device) videos = self.vae.decode(x0) # self.vae.model.to(device="cpu") del noise, latents, noise_pred del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null del x0, temp_x0 del sample_scheduler torch.cuda.empty_cache() gc.collect() torch.cuda.synchronize() if dist.is_initialized(): dist.barrier() return videos[0] # if get_local_rank() == 0 else None def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0): video = self.inference( prompt, ref_img_path, audio_path, size=SIZE_CONFIGS[f"{width}*{height}"], frame_num=frames, shift=self.config.diffusion.timesteps.sampling.shift, sample_solver='unipc', sampling_steps=steps, inference_mode = inference_mode, tea_cache_l1_thresh = tea_cache_l1_thresh, seed=seed ) torch.cuda.empty_cache() gc.collect() # Save samples. if get_sequence_parallel_rank() == 0: pathname = self.save_sample( sample=video, audio_path=audio_path, output_dir = output_dir, filename=filename, ) self.logger.info(f"Finished {filename}, saved to {pathname}.") del video, prompt torch.cuda.empty_cache() gc.collect() def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str): gen_config = self.config.generation # Prepare file path. extension = ".mp4" if sample.ndim == 4 else ".png" filename += extension pathname = os.path.join(output_dir, filename) # Convert sample. sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).to("cpu", torch.uint8) sample = rearrange(sample, "c t h w -> t h w c") # Save file. if sample.ndim == 4: if audio_path is not None: tensor_to_video( sample.numpy(), pathname, audio_path, fps=gen_config.fps) else: mediapy.write_video( path=pathname, images=sample.numpy(), fps=gen_config.fps, ) else: raise ValueError return pathname def prepare_positive_prompts(self): pos_prompts = self.config.generation.positive_prompt if pos_prompts.endswith(".json"): pos_prompts = prepare_json_dataset(pos_prompts) else: raise NotImplementedError assert isinstance(pos_prompts, ListConfig) return pos_prompts class TeaCache: def __init__(self, num_inference_steps, rel_l1_thresh, model_id): self.num_inference_steps = num_inference_steps self.step = 0 self.accumulated_rel_l1_distance = 0 self.previous_modulated_input = None self.rel_l1_thresh = rel_l1_thresh self.previous_residual = None self.previous_hidden_states = None self.coefficients_dict = { "Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], "Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], "Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], "Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], } if model_id not in self.coefficients_dict: supported_model_ids = ", ".join([i for i in self.coefficients_dict]) raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") self.coefficients = self.coefficients_dict[model_id] def check(self, dit, x, t_mod): modulated_inp = t_mod.clone() if self.step == 0 or self.step == self.num_inference_steps - 1: should_calc = True self.accumulated_rel_l1_distance = 0 else: coefficients = self.coefficients rescale_func = np.poly1d(coefficients) self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) if self.accumulated_rel_l1_distance < self.rel_l1_thresh: should_calc = False else: should_calc = True self.accumulated_rel_l1_distance = 0 self.previous_modulated_input = modulated_inp self.step += 1 if self.step == self.num_inference_steps: self.step = 0 if should_calc: self.previous_hidden_states = x.clone() return not should_calc def store(self, hidden_states): if self.previous_hidden_states is None: return self.previous_residual = hidden_states - self.previous_hidden_states self.previous_hidden_states = None def update(self, hidden_states): hidden_states = hidden_states + self.previous_residual return hidden_states