Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import os | |
| import warnings | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.utils import save_image | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| PIL_INTERPOLATION, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
| from utils.vaehook import VAEHook, perfcount | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> # !pip install opencv-python transformers accelerate | |
| >>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| >>> from diffusers.utils import load_image | |
| >>> import numpy as np | |
| >>> import torch | |
| >>> import cv2 | |
| >>> from PIL import Image | |
| >>> # download an image | |
| >>> image = load_image( | |
| ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" | |
| ... ) | |
| >>> image = np.array(image) | |
| >>> # get canny image | |
| >>> image = cv2.Canny(image, 100, 200) | |
| >>> image = image[:, :, None] | |
| >>> image = np.concatenate([image, image, image], axis=2) | |
| >>> canny_image = Image.fromarray(image) | |
| >>> # load control net and stable diffusion v1-5 | |
| >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | |
| >>> pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 | |
| ... ) | |
| >>> # speed up diffusion process with faster scheduler and memory optimization | |
| >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| >>> # remove following line if xformers is not installed | |
| >>> pipe.enable_xformers_memory_efficient_attention() | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> # generate image | |
| >>> generator = torch.manual_seed(0) | |
| >>> image = pipe( | |
| ... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image | |
| ... ).images[0] | |
| ``` | |
| """ | |
| class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMixin): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| In addition the pipeline inherits the following loading methods: | |
| - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
| Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets | |
| as a list, the outputs from each ControlNet are added together to create one combined additional | |
| conditioning. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPImageProcessor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| if isinstance(controlnet, (list, tuple)): | |
| controlnet = MultiControlNetModel(controlnet) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def _init_tiled_vae(self, | |
| encoder_tile_size = 256, | |
| decoder_tile_size = 256, | |
| fast_decoder = False, | |
| fast_encoder = False, | |
| color_fix = False, | |
| vae_to_gpu = True): | |
| # save original forward (only once) | |
| if not hasattr(self.vae.encoder, 'original_forward'): | |
| setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward) | |
| if not hasattr(self.vae.decoder, 'original_forward'): | |
| setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward) | |
| encoder = self.vae.encoder | |
| decoder = self.vae.decoder | |
| self.vae.encoder.forward = VAEHook( | |
| encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu) | |
| self.vae.decoder.forward = VAEHook( | |
| decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
| several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| if self.safety_checker is not None: | |
| cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| # the safety checker can offload the vae again | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # control net hook has be manually offloaded as it alternates with unet | |
| cpu_offload_with_hook(self.controlnet, device) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ram_encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| ram_encoder_hidden_states = torch.cat([ram_encoder_hidden_states, ram_encoder_hidden_states]) | |
| return prompt_embeds, ram_encoder_hidden_states | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| warnings.warn( | |
| "The decode_latents method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor instead", | |
| FutureWarning, | |
| ) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| #extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| controlnet_conditioning_scale=1.0, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| # `prompt` needs more sophisticated handling when there are multiple | |
| # conditionings. | |
| if isinstance(self.controlnet, MultiControlNetModel): | |
| if isinstance(prompt, list): | |
| logger.warning( | |
| f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" | |
| " prompts. The conditionings will be fixed across the prompts." | |
| ) | |
| # Check `image` | |
| is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
| self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
| ) | |
| if ( | |
| isinstance(self.controlnet, ControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
| ): | |
| self.check_image(image, prompt, prompt_embeds) | |
| elif ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if not isinstance(image, list): | |
| raise TypeError("For multiple controlnets: `image` must be type `list`") | |
| # When `image` is a nested list: | |
| # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
| elif any(isinstance(i, list) for i in image): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif len(image) != len(self.controlnet.nets): | |
| raise ValueError( | |
| "For multiple controlnets: `image` must have the same length as the number of controlnets." | |
| ) | |
| for image_ in image: | |
| self.check_image(image_, prompt, prompt_embeds) | |
| else: | |
| assert False | |
| # Check `controlnet_conditioning_scale` | |
| if ( | |
| isinstance(self.controlnet, ControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
| ): | |
| if not isinstance(controlnet_conditioning_scale, float): | |
| raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
| elif ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if isinstance(controlnet_conditioning_scale, list): | |
| if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
| self.controlnet.nets | |
| ): | |
| raise ValueError( | |
| "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
| " the same length as the number of controlnets" | |
| ) | |
| else: | |
| assert False | |
| def check_image(self, image, prompt, prompt_embeds): | |
| image_is_pil = isinstance(image, PIL.Image.Image) | |
| image_is_tensor = isinstance(image, torch.Tensor) | |
| image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
| image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
| if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list: | |
| raise TypeError( | |
| "image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" | |
| ) | |
| if image_is_pil: | |
| image_batch_size = 1 | |
| elif image_is_tensor: | |
| image_batch_size = image.shape[0] | |
| elif image_is_pil_list: | |
| image_batch_size = len(image) | |
| elif image_is_tensor_list: | |
| image_batch_size = len(image) | |
| if prompt is not None and isinstance(prompt, str): | |
| prompt_batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| prompt_batch_size = len(prompt) | |
| elif prompt_embeds is not None: | |
| prompt_batch_size = prompt_embeds.shape[0] | |
| if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| if not isinstance(image, torch.Tensor): | |
| if isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| images = [] | |
| for image_ in image: | |
| image_ = image_.convert("RGB") | |
| #image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
| image_ = np.array(image_) | |
| image_ = image_[None, :] | |
| images.append(image_) | |
| image = images | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image)#.flip(1) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| #latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
| #offset_noise = torch.randn(batch_size, num_channels_latents, 1, 1, device=device) | |
| #latents = latents + 0.1 * offset_noise | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _default_height_width(self, height, width, image): | |
| # NOTE: It is possible that a list of images have different | |
| # dimensions for each image, so just checking the first image | |
| # is not _exactly_ correct, but it is simple. | |
| while isinstance(image, list): | |
| image = image[0] | |
| if height is None: | |
| if isinstance(image, PIL.Image.Image): | |
| height = image.height | |
| elif isinstance(image, torch.Tensor): | |
| height = image.shape[2] | |
| height = (height // 8) * 8 # round down to nearest multiple of 8 | |
| if width is None: | |
| if isinstance(image, PIL.Image.Image): | |
| width = image.width | |
| elif isinstance(image, torch.Tensor): | |
| width = image.shape[3] | |
| width = (width // 8) * 8 # round down to nearest multiple of 8 | |
| return height, width | |
| # override DiffusionPipeline | |
| def save_pretrained( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| safe_serialization: bool = False, | |
| variant: Optional[str] = None, | |
| ): | |
| if isinstance(self.controlnet, ControlNetModel): | |
| super().save_pretrained(save_directory, safe_serialization, variant) | |
| else: | |
| raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.") | |
| def _gaussian_weights(self, tile_width, tile_height, nbatches): | |
| """Generates a gaussian mask of weights for tile contributions""" | |
| from numpy import pi, exp, sqrt | |
| import numpy as np | |
| latent_width = tile_width | |
| latent_height = tile_height | |
| var = 0.01 | |
| midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1 | |
| x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)] | |
| midpoint = latent_height / 2 | |
| y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)] | |
| weights = np.outer(y_probs, x_probs) | |
| return torch.tile(torch.tensor(weights, device=self.device), (nbatches, self.unet.config.in_channels, 1, 1)) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| conditioning_scale: Union[float, List[float]] = 1.0, | |
| guess_mode: bool = False, | |
| image_sr = None, | |
| start_steps = 999, | |
| start_point = 'noise', | |
| ram_encoder_hidden_states=None, | |
| latent_tiled_size=320, | |
| latent_tiled_overlap=4, | |
| args=None | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, | |
| `List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If | |
| the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can | |
| also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If | |
| height and/or width are passed, `image` is resized according to them. If multiple ControlNets are | |
| specified in init, images must be passed as a list such that each element of the list can be correctly | |
| batched for input to a single controlnet. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the controlnet are multiplied by `conditioning_scale` before they are added | |
| to the residual in the original unet. If multiple ControlNets are specified in init, you can set the | |
| corresponding scale as a list. | |
| guess_mode (`bool`, *optional*, defaults to `False`): | |
| In this mode, the ControlNet encoder will try best to recognize the content of the input image even if | |
| you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 0. Default height and width to unet | |
| height, width = self._default_height_width(height, width, image) | |
| # 1. Check inputs. Raise error if not correct | |
| """ | |
| self.check_inputs( | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| conditioning_scale, | |
| ) | |
| """ | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
| """ | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance(conditioning_scale, float): | |
| conditioning_scale = [conditioning_scale] * len(controlnet.nets) | |
| global_pool_conditions = ( | |
| controlnet.config.global_pool_conditions | |
| if isinstance(controlnet, ControlNetModel) | |
| else controlnet.nets[0].config.global_pool_conditions | |
| ) | |
| guess_mode = guess_mode or global_pool_conditions | |
| """ | |
| # 3. Encode input prompt | |
| prompt_embeds, ram_encoder_hidden_states = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ram_encoder_hidden_states=ram_encoder_hidden_states | |
| ) | |
| # 4. Prepare image | |
| image = self.prepare_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| # 5. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare the start point | |
| if start_point == 'noise': | |
| latents = latents | |
| elif start_point == 'lr': # LRE Strategy | |
| latents_condition_image = self.vae.encode(image*2-1).latent_dist.sample() | |
| latents_condition_image = latents_condition_image * self.vae.config.scaling_factor | |
| start_steps_tensor = torch.randint(start_steps, start_steps+1, (latents.shape[0],), device=latents.device) | |
| start_steps_tensor = start_steps_tensor.long() | |
| latents = self.scheduler.add_noise(latents_condition_image[0:1, ...], latents, start_steps_tensor) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| _, _, h, w = latents.size() | |
| tile_size, tile_overlap = (latent_tiled_size, latent_tiled_overlap) if args is not None else (256, 8) | |
| if h*w<=tile_size*tile_size: | |
| print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.") | |
| else: | |
| print(f"[Tiled Latent]: the input size is {image.shape[-2]}x{image.shape[-1]}, need to tiled") | |
| for i, t in enumerate(timesteps): | |
| # pass, if the timestep is larger than start_steps | |
| if t > start_steps: | |
| print(f'pass {t} steps.') | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # controlnet(s) inference | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| controlnet_latent_model_input = latents | |
| controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
| else: | |
| controlnet_latent_model_input = latent_model_input | |
| controlnet_prompt_embeds = prompt_embeds | |
| if h*w<=tile_size*tile_size: # tiled latent input | |
| down_block_res_samples, mid_block_res_sample = [None]*10, None | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| controlnet_latent_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=image, | |
| conditioning_scale=conditioning_scale, | |
| guess_mode=guess_mode, | |
| return_dict=False, | |
| image_encoder_hidden_states = ram_encoder_hidden_states, | |
| ) | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infered ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
| mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| image_encoder_hidden_states = ram_encoder_hidden_states, | |
| )[0] | |
| else: | |
| tile_weights = self._gaussian_weights(tile_size, tile_size, 1) | |
| tile_size = min(tile_size, min(h, w)) | |
| tile_weights = self._gaussian_weights(tile_size, tile_size, 1) | |
| grid_rows = 0 | |
| cur_x = 0 | |
| while cur_x < latent_model_input.size(-1): | |
| cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size | |
| grid_rows += 1 | |
| grid_cols = 0 | |
| cur_y = 0 | |
| while cur_y < latent_model_input.size(-2): | |
| cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size | |
| grid_cols += 1 | |
| input_list = [] | |
| cond_list = [] | |
| img_list = [] | |
| noise_preds = [] | |
| for row in range(grid_rows): | |
| noise_preds_row = [] | |
| for col in range(grid_cols): | |
| if col < grid_cols-1 or row < grid_rows-1: | |
| # extract tile from input image | |
| ofs_x = max(row * tile_size-tile_overlap * row, 0) | |
| ofs_y = max(col * tile_size-tile_overlap * col, 0) | |
| # input tile area on total image | |
| if row == grid_rows-1: | |
| ofs_x = w - tile_size | |
| if col == grid_cols-1: | |
| ofs_y = h - tile_size | |
| input_start_x = ofs_x | |
| input_end_x = ofs_x + tile_size | |
| input_start_y = ofs_y | |
| input_end_y = ofs_y + tile_size | |
| # input tile dimensions | |
| input_tile = latent_model_input[:, :, input_start_y:input_end_y, input_start_x:input_end_x] | |
| input_list.append(input_tile) | |
| cond_tile = controlnet_latent_model_input[:, :, input_start_y:input_end_y, input_start_x:input_end_x] | |
| cond_list.append(cond_tile) | |
| img_tile = image[:, :, input_start_y*8:input_end_y*8, input_start_x*8:input_end_x*8] | |
| img_list.append(img_tile) | |
| if len(input_list) == batch_size or col == grid_cols-1: | |
| input_list_t = torch.cat(input_list, dim=0) | |
| cond_list_t = torch.cat(cond_list, dim=0) | |
| img_list_t = torch.cat(img_list, dim=0) | |
| #print(input_list_t.shape, cond_list_t.shape, img_list_t.shape, fg_mask_list_t.shape) | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| cond_list_t, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=img_list_t, | |
| conditioning_scale=conditioning_scale, | |
| guess_mode=guess_mode, | |
| return_dict=False, | |
| image_encoder_hidden_states = ram_encoder_hidden_states, | |
| ) | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infered ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
| mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
| # predict the noise residual | |
| model_out = self.unet( | |
| input_list_t, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| image_encoder_hidden_states = ram_encoder_hidden_states, | |
| )[0] | |
| #for sample_i in range(model_out.size(0)): | |
| # noise_preds_row.append(model_out[sample_i].unsqueeze(0)) | |
| input_list = [] | |
| cond_list = [] | |
| img_list = [] | |
| noise_preds.append(model_out) | |
| # Stitch noise predictions for all tiles | |
| noise_pred = torch.zeros(latent_model_input.shape, device=latent_model_input.device) | |
| contributors = torch.zeros(latent_model_input.shape, device=latent_model_input.device) | |
| # Add each tile contribution to overall latents | |
| for row in range(grid_rows): | |
| for col in range(grid_cols): | |
| if col < grid_cols-1 or row < grid_rows-1: | |
| # extract tile from input image | |
| ofs_x = max(row * tile_size-tile_overlap * row, 0) | |
| ofs_y = max(col * tile_size-tile_overlap * col, 0) | |
| # input tile area on total image | |
| if row == grid_rows-1: | |
| ofs_x = w - tile_size | |
| if col == grid_cols-1: | |
| ofs_y = h - tile_size | |
| input_start_x = ofs_x | |
| input_end_x = ofs_x + tile_size | |
| input_start_y = ofs_y | |
| input_end_y = ofs_y + tile_size | |
| noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights | |
| contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights | |
| # Average overlapping areas with more than 1 contributor | |
| noise_pred /= contributors | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # If we do sequential model offloading, let's offload unet and controlnet | |
| # manually for max memory savings | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.unet.to("cpu") | |
| self.controlnet.to("cpu") | |
| torch.cuda.empty_cache() | |
| has_nsfw_concept = None | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]#.flip(1) | |
| #image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |