Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import os | |
| import sys | |
| from typing import List | |
| # sys.path.append(os.getcwd()) | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| print(f'torch version:{torch.__version__}') | |
| # import subprocess | |
| # import importlib, site, sys | |
| # # Re-discover all .pth/.egg-link files | |
| # for sitedir in site.getsitepackages(): | |
| # site.addsitedir(sitedir) | |
| # # Clear caches so importlib will pick up new modules | |
| # importlib.invalidate_caches() | |
| # def sh(cmd): subprocess.check_call(cmd, shell=True) | |
| # sh("pip install -U xformers --index-url https://download.pytorch.org/whl/cu126") | |
| # # tell Python to re-scan site-packages now that the egg-link exists | |
| # import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches() | |
| import torch.utils.checkpoint | |
| from pytorch_lightning import seed_everything | |
| from diffusers import AutoencoderKL, DDIMScheduler | |
| from diffusers.utils import check_min_version | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline | |
| from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix | |
| from ram.models.ram_lora import ram | |
| from ram import inference_ram as inference | |
| from torchvision import transforms | |
| from models.controlnet import ControlNetModel | |
| from models.unet_2d_condition import UNet2DConditionModel | |
| tensor_transforms = transforms.Compose([ | |
| transforms.ToTensor(), | |
| ]) | |
| ram_transforms = transforms.Compose([ | |
| transforms.Resize((384, 384)), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| ]) | |
| snapshot_download( | |
| repo_id="alexnasa/SEESR", | |
| local_dir="preset/models" | |
| ) | |
| snapshot_download( | |
| repo_id="stabilityai/sd-turbo", | |
| local_dir="preset/models/sd-turbo" | |
| ) | |
| snapshot_download( | |
| repo_id="xinyu1205/recognize_anything_model", | |
| local_dir="preset/models/" | |
| ) | |
| # Load scheduler, tokenizer and models. | |
| pretrained_model_path = 'preset/models/sd-turbo' | |
| seesr_model_path = 'preset/models/seesr' | |
| scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
| text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
| tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
| # feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor") | |
| unet = UNet2DConditionModel.from_pretrained_orig(pretrained_model_path, seesr_model_path, subfolder="unet") | |
| controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet") | |
| # Freeze vae and text_encoder | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| controlnet.requires_grad_(False) | |
| # unet.to("cuda") | |
| # controlnet.to("cuda") | |
| # unet.enable_xformers_memory_efficient_attention() | |
| # controlnet.enable_xformers_memory_efficient_attention() | |
| # Get the validation pipeline | |
| validation_pipeline = StableDiffusionControlNetPipeline( | |
| vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None, | |
| unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False, | |
| ) | |
| validation_pipeline._init_tiled_vae(encoder_tile_size=1024, | |
| decoder_tile_size=224) | |
| weight_dtype = torch.float16 | |
| device = "cuda" | |
| # Move text_encode and vae to gpu and cast to weight_dtype | |
| text_encoder.to(device, dtype=weight_dtype) | |
| vae.to(device, dtype=weight_dtype) | |
| unet.to(device, dtype=weight_dtype) | |
| controlnet.to(device, dtype=weight_dtype) | |
| tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth', | |
| pretrained_condition='preset/models/DAPE.pth', | |
| image_size=384, | |
| vit='swin_l') | |
| tag_model.eval() | |
| tag_model.to(device, dtype=weight_dtype) | |
| def process( | |
| input_image: Image.Image, | |
| user_prompt: str, | |
| use_KDS: bool, | |
| bandwidth: float, | |
| num_particles: int, | |
| positive_prompt: str, | |
| negative_prompt: str, | |
| num_inference_steps: int, | |
| scale_factor: int, | |
| cfg_scale: float, | |
| seed: int, | |
| latent_tiled_size: int, | |
| latent_tiled_overlap: int, | |
| sample_times: int | |
| ) -> List[np.ndarray]: | |
| process_size = 512 | |
| resize_preproc = transforms.Compose([ | |
| transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR), | |
| ]) | |
| # with torch.no_grad(): | |
| seed_everything(seed) | |
| generator = torch.Generator(device=device) | |
| validation_prompt = "" | |
| lq = tensor_transforms(input_image).unsqueeze(0).to(device).half() | |
| lq = ram_transforms(lq) | |
| res = inference(lq, tag_model) | |
| ram_encoder_hidden_states = tag_model.generate_image_embeds(lq) | |
| validation_prompt = f"{res[0]}, {positive_prompt}," | |
| validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}" | |
| ori_width, ori_height = input_image.size | |
| resize_flag = False | |
| rscale = scale_factor | |
| input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale))) | |
| if min(input_image.size) < process_size: | |
| input_image = resize_preproc(input_image) | |
| input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8)) | |
| width, height = input_image.size | |
| resize_flag = True # | |
| images = [] | |
| for _ in range(sample_times): | |
| try: | |
| with torch.autocast("cuda"): | |
| image = validation_pipeline( | |
| validation_prompt, input_image, negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, generator=generator, | |
| height=height, width=width, | |
| guidance_scale=cfg_scale, conditioning_scale=1, | |
| start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states, | |
| latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap, | |
| use_KDS=use_KDS, bandwidth=bandwidth, num_particles=num_particles | |
| ).images[0] | |
| if True: # alpha<1.0: | |
| image = wavelet_color_fix(image, input_image) | |
| if resize_flag: | |
| image = image.resize((ori_width * rscale, ori_height * rscale)) | |
| except Exception as e: | |
| print(e) | |
| image = Image.new(mode="RGB", size=(512, 512)) | |
| images.append(np.array(image)) | |
| return images | |
| # | |
| MARKDOWN = \ | |
| """ | |
| ## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution | |
| [GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518) | |
| If SeeSR is helpful for you, please help star the GitHub Repo. Thanks! | |
| """ | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil") | |
| num_particles = gr.Slider(label="Num of Partickes", minimum=1, maximum=16, step=1, value=10) | |
| bandwidth = gr.Slider(label="Bandwidth", minimum=0.1, maximum=0.8, step=0.1, value=0.1) | |
| use_KDS = gr.Checkbox(label="Use Kernel Density Steering") | |
| run_button = gr.Button("Run") | |
| with gr.Accordion("Options", open=True): | |
| user_prompt = gr.Textbox(label="User Prompt", value="") | |
| positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece") | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality" | |
| ) | |
| cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1) | |
| seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231) | |
| sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1) | |
| latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1) | |
| latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1) | |
| scale_factor = gr.Number(label="SR Scale", value=4) | |
| with gr.Column(): | |
| result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery") | |
| examples = gr.Examples( | |
| examples=[ | |
| [ | |
| "preset/datasets/test_datasets/woman.png", | |
| "", | |
| False, | |
| 0.1, | |
| 4, | |
| "clean, high-resolution, 8k, best quality, masterpiece", | |
| "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
| 4, | |
| 4, | |
| 1.0, | |
| 123, | |
| 320, | |
| 4, | |
| 1, | |
| ], | |
| [ | |
| "preset/datasets/test_datasets/woman.png", | |
| "", | |
| True, | |
| 0.1, | |
| 4, | |
| "clean, high-resolution, 8k, best quality, masterpiece", | |
| "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
| 4, | |
| 4, | |
| 1.0, | |
| 123, | |
| 320, | |
| 4, | |
| 1, | |
| ], | |
| [ | |
| "preset/datasets/test_datasets/woman.png", | |
| "", | |
| True, | |
| 0.1, | |
| 16, | |
| "clean, high-resolution, 8k, best quality, masterpiece", | |
| "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
| 4, | |
| 4, | |
| 1.0, | |
| 123, | |
| 320, | |
| 4, | |
| 1, | |
| ], | |
| ], | |
| inputs=[ | |
| input_image, | |
| user_prompt, | |
| use_KDS, | |
| bandwidth, | |
| num_particles, | |
| positive_prompt, | |
| negative_prompt, | |
| num_inference_steps, | |
| scale_factor, | |
| cfg_scale, | |
| seed, | |
| latent_tiled_size, | |
| latent_tiled_overlap, | |
| sample_times, | |
| ], | |
| outputs=[result_gallery], | |
| fn=process, | |
| cache_examples=True, | |
| ) | |
| inputs = [ | |
| input_image, | |
| user_prompt, | |
| use_KDS, | |
| bandwidth, | |
| num_particles, | |
| positive_prompt, | |
| negative_prompt, | |
| num_inference_steps, | |
| scale_factor, | |
| cfg_scale, | |
| seed, | |
| latent_tiled_size, | |
| latent_tiled_overlap, | |
| sample_times, | |
| ] | |
| run_button.click(fn=process, inputs=inputs, outputs=[result_gallery]) | |
| block.launch(share=True) | |