Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| AutoModelForImageTextToText, | |
| Gemma3ForConditionalGeneration # new Gemma3 model import | |
| ) | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| # Helper function to return a progress bar HTML snippet. | |
| def progress_bar_html(label: str) -> str: | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #FF69B4 ; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| ### Load Models & Processors ### | |
| # Qwen2VL OCR model (default) | |
| QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or alternate version | |
| qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
| qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| QV_MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| # Aya-Vision model (trigger with @aya-vision) | |
| AYA_MODEL_ID = "CohereForAI/aya-vision-8b" | |
| aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID) | |
| aya_model = AutoModelForImageTextToText.from_pretrained( | |
| AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16 | |
| ) | |
| # Gemma3-4b model (trigger with @gemma3-4b) | |
| GEMMA3_MODEL_ID = "google/gemma-3-4b-it" | |
| gemma3_model = Gemma3ForConditionalGeneration.from_pretrained( | |
| GEMMA3_MODEL_ID, device_map="auto" | |
| ).eval() | |
| gemma3_processor = AutoProcessor.from_pretrained(GEMMA3_MODEL_ID) | |
| def model_inference(input_dict, history): | |
| text = input_dict["text"].strip() | |
| files = input_dict.get("files", []) | |
| # Branch: Aya-Vision (trigger with @aya-vision) | |
| if text.lower().startswith("@aya-vision"): | |
| text_prompt = text[len("@aya-vision"):].strip() | |
| if not files: | |
| yield "Error: Please provide an image for the @aya-vision feature." | |
| return | |
| image = load_image(files[0]) | |
| yield progress_bar_html("Processing with Aya-Vision-8b") | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text_prompt}, | |
| ], | |
| }] | |
| inputs = aya_processor.apply_chat_template( | |
| messages, | |
| padding=True, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt" | |
| ).to(aya_model.device) | |
| streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| temperature=0.3 | |
| ) | |
| thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Branch: Gemma3-4b (trigger with @gemma3-4b) | |
| if text.lower().startswith("@gemma3-4b"): | |
| text_prompt = text[len("@gemma3-4b"):].strip() | |
| if not files: | |
| yield "Error: Please provide an image for the @gemma3-4b feature." | |
| return | |
| image = load_image(files[0]) | |
| yield progress_bar_html("Processing with Gemma3-4b") | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": [{"type": "text", "text": "You are a helpful assistant."}] | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text_prompt} | |
| ] | |
| } | |
| ] | |
| inputs = gemma3_processor.apply_chat_template( | |
| messages, add_generation_prompt=True, tokenize=True, | |
| return_dict=True, return_tensors="pt" | |
| ).to(gemma3_model.device, dtype=torch.bfloat16) | |
| input_len = inputs["input_ids"].shape[-1] | |
| streamer = TextIteratorStreamer(gemma3_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False) | |
| thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Default Branch: Qwen2-VL OCR (for text query with optional images) | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| yield "Error: Please input a query and optionally image(s)." | |
| return | |
| if text == "" and images: | |
| yield "Error: Please input a text query along with the image(s)." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ], | |
| }] | |
| prompt = qwen_processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| inputs = qwen_processor( | |
| text=[prompt], | |
| images=images if images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing with Qwen2VL OCR") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| # Examples for quick testing. | |
| examples = [ | |
| [{"text": "@gemma3-4b Summarize the letter", "files": ["examples/1.png"]}], | |
| [{"text": "@gemma3-4b Extract JSON from the image", "files": ["example_images/document.jpg"]}], | |
| [{"text": "@gemma3-4b Describe the photo", "files": ["examples/3.png"]}], | |
| [{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}], | |
| [{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
| [{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
| [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
| [{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
| ] | |
| # Gradio ChatInterface with a multimodal textbox. | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description=( | |
| "# **Multimodal OCR & Vision Features**\n\n" | |
| "Use the following commands to select a model:\n" | |
| "- `@aya-vision` for Aya-Vision-8b\n" | |
| "- `@gemma3-4b` for Gemma3-4b\n\n" | |
| "Default processing is done with Qwen2VL OCR." | |
| ), | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox( | |
| label="Query Input", | |
| file_types=["image"], | |
| file_count="multiple", | |
| placeholder="Enter your text query and attach images if needed. Use @aya-vision or @gemma3-4b to choose a feature." | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| ) | |
| demo.launch(debug=True) |