Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ from transformers import (
|
|
| 4 |
AutoProcessor,
|
| 5 |
TextIteratorStreamer,
|
| 6 |
AutoModelForImageTextToText,
|
| 7 |
-
Gemma3ForConditionalGeneration # new Gemma3 model import
|
| 8 |
)
|
| 9 |
from transformers.image_utils import load_image
|
| 10 |
from threading import Thread
|
|
@@ -32,10 +31,7 @@ def progress_bar_html(label: str) -> str:
|
|
| 32 |
</style>
|
| 33 |
'''
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# Qwen2VL OCR model (default)
|
| 38 |
-
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or alternate version
|
| 39 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
| 40 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 41 |
QV_MODEL_ID,
|
|
@@ -43,105 +39,62 @@ qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 43 |
torch_dtype=torch.float16
|
| 44 |
).to("cuda").eval()
|
| 45 |
|
| 46 |
-
# Aya-Vision model (trigger with @aya-vision)
|
| 47 |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
| 48 |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
| 49 |
aya_model = AutoModelForImageTextToText.from_pretrained(
|
| 50 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
| 51 |
)
|
| 52 |
|
| 53 |
-
# Gemma3-4b model (trigger with @gemma3-4b)
|
| 54 |
-
GEMMA3_MODEL_ID = "google/gemma-3-4b-it"
|
| 55 |
-
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
| 56 |
-
GEMMA3_MODEL_ID, device_map="auto"
|
| 57 |
-
).eval()
|
| 58 |
-
gemma3_processor = AutoProcessor.from_pretrained(GEMMA3_MODEL_ID)
|
| 59 |
-
|
| 60 |
@spaces.GPU
|
| 61 |
def model_inference(input_dict, history):
|
| 62 |
text = input_dict["text"].strip()
|
| 63 |
files = input_dict.get("files", [])
|
| 64 |
|
| 65 |
-
# Branch: Aya-Vision (trigger with @aya-vision)
|
| 66 |
if text.lower().startswith("@aya-vision"):
|
|
|
|
| 67 |
text_prompt = text[len("@aya-vision"):].strip()
|
| 68 |
if not files:
|
| 69 |
yield "Error: Please provide an image for the @aya-vision feature."
|
| 70 |
return
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
"
|
| 75 |
-
|
| 76 |
-
{"type": "image", "image": image},
|
| 77 |
-
{"type": "text", "text": text_prompt},
|
| 78 |
-
],
|
| 79 |
-
}]
|
| 80 |
-
inputs = aya_processor.apply_chat_template(
|
| 81 |
-
messages,
|
| 82 |
-
padding=True,
|
| 83 |
-
add_generation_prompt=True,
|
| 84 |
-
tokenize=True,
|
| 85 |
-
return_dict=True,
|
| 86 |
-
return_tensors="pt"
|
| 87 |
-
).to(aya_model.device)
|
| 88 |
-
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
| 89 |
-
generation_kwargs = dict(
|
| 90 |
-
inputs,
|
| 91 |
-
streamer=streamer,
|
| 92 |
-
max_new_tokens=1024,
|
| 93 |
-
do_sample=True,
|
| 94 |
-
temperature=0.3
|
| 95 |
-
)
|
| 96 |
-
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
| 97 |
-
thread.start()
|
| 98 |
-
buffer = ""
|
| 99 |
-
for new_text in streamer:
|
| 100 |
-
buffer += new_text
|
| 101 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 102 |
-
time.sleep(0.01)
|
| 103 |
-
yield buffer
|
| 104 |
-
return
|
| 105 |
-
|
| 106 |
-
# Branch: Gemma3-4b (trigger with @gemma3-4b)
|
| 107 |
-
if text.lower().startswith("@gemma3-4b"):
|
| 108 |
-
text_prompt = text[len("@gemma3-4b"):].strip()
|
| 109 |
-
if not files:
|
| 110 |
-
yield "Error: Please provide an image for the @gemma3-4b feature."
|
| 111 |
-
return
|
| 112 |
-
image = load_image(files[0])
|
| 113 |
-
yield progress_bar_html("Processing with Gemma3-4b")
|
| 114 |
-
messages = [
|
| 115 |
-
{
|
| 116 |
-
"role": "system",
|
| 117 |
-
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
| 118 |
-
},
|
| 119 |
-
{
|
| 120 |
"role": "user",
|
| 121 |
"content": [
|
| 122 |
{"type": "image", "image": image},
|
| 123 |
-
{"type": "text", "text": text_prompt}
|
| 124 |
-
]
|
| 125 |
-
}
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
#
|
| 145 |
if len(files) > 1:
|
| 146 |
images = [load_image(image) for image in files]
|
| 147 |
elif len(files) == 1:
|
|
@@ -149,6 +102,7 @@ def model_inference(input_dict, history):
|
|
| 149 |
else:
|
| 150 |
images = []
|
| 151 |
|
|
|
|
| 152 |
if text == "" and not images:
|
| 153 |
yield "Error: Please input a query and optionally image(s)."
|
| 154 |
return
|
|
@@ -156,6 +110,7 @@ def model_inference(input_dict, history):
|
|
| 156 |
yield "Error: Please input a text query along with the image(s)."
|
| 157 |
return
|
| 158 |
|
|
|
|
| 159 |
messages = [{
|
| 160 |
"role": "user",
|
| 161 |
"content": [
|
|
@@ -174,9 +129,11 @@ def model_inference(input_dict, history):
|
|
| 174 |
padding=True,
|
| 175 |
).to("cuda")
|
| 176 |
|
|
|
|
| 177 |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
| 178 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 179 |
|
|
|
|
| 180 |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
| 181 |
thread.start()
|
| 182 |
|
|
@@ -188,36 +145,28 @@ def model_inference(input_dict, history):
|
|
| 188 |
time.sleep(0.01)
|
| 189 |
yield buffer
|
| 190 |
|
| 191 |
-
# Examples for quick testing.
|
| 192 |
examples = [
|
| 193 |
-
[{"text": "@
|
| 194 |
-
[{"text": "@
|
| 195 |
-
[{"text": "
|
|
|
|
| 196 |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
| 197 |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
| 198 |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
| 199 |
-
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
| 200 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 201 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 202 |
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 203 |
]
|
| 204 |
|
| 205 |
-
# Gradio ChatInterface with a multimodal textbox.
|
| 206 |
demo = gr.ChatInterface(
|
| 207 |
fn=model_inference,
|
| 208 |
-
|
| 209 |
-
"# **Multimodal OCR & Vision Features**\n\n"
|
| 210 |
-
"Use the following commands to select a model:\n"
|
| 211 |
-
"- `@aya-vision` for Aya-Vision-8b\n"
|
| 212 |
-
"- `@gemma3-4b` for Gemma3-4b\n\n"
|
| 213 |
-
"Default processing is done with Qwen2VL OCR."
|
| 214 |
-
),
|
| 215 |
examples=examples,
|
| 216 |
textbox=gr.MultimodalTextbox(
|
| 217 |
label="Query Input",
|
| 218 |
file_types=["image"],
|
| 219 |
file_count="multiple",
|
| 220 |
-
placeholder="
|
| 221 |
),
|
| 222 |
stop_btn="Stop Generation",
|
| 223 |
multimodal=True,
|
|
|
|
| 4 |
AutoProcessor,
|
| 5 |
TextIteratorStreamer,
|
| 6 |
AutoModelForImageTextToText,
|
|
|
|
| 7 |
)
|
| 8 |
from transformers.image_utils import load_image
|
| 9 |
from threading import Thread
|
|
|
|
| 31 |
</style>
|
| 32 |
'''
|
| 33 |
|
| 34 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use #prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
|
|
|
|
|
|
|
|
|
|
| 35 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
| 36 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 37 |
QV_MODEL_ID,
|
|
|
|
| 39 |
torch_dtype=torch.float16
|
| 40 |
).to("cuda").eval()
|
| 41 |
|
|
|
|
| 42 |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
| 43 |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
| 44 |
aya_model = AutoModelForImageTextToText.from_pretrained(
|
| 45 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
| 46 |
)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
@spaces.GPU
|
| 49 |
def model_inference(input_dict, history):
|
| 50 |
text = input_dict["text"].strip()
|
| 51 |
files = input_dict.get("files", [])
|
| 52 |
|
|
|
|
| 53 |
if text.lower().startswith("@aya-vision"):
|
| 54 |
+
# Remove the command prefix and trim the prompt.
|
| 55 |
text_prompt = text[len("@aya-vision"):].strip()
|
| 56 |
if not files:
|
| 57 |
yield "Error: Please provide an image for the @aya-vision feature."
|
| 58 |
return
|
| 59 |
+
else:
|
| 60 |
+
# For simplicity, use the first provided image.
|
| 61 |
+
image = load_image(files[0])
|
| 62 |
+
yield progress_bar_html("Processing with Aya-Vision-8b")
|
| 63 |
+
messages = [{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
"role": "user",
|
| 65 |
"content": [
|
| 66 |
{"type": "image", "image": image},
|
| 67 |
+
{"type": "text", "text": text_prompt},
|
| 68 |
+
],
|
| 69 |
+
}]
|
| 70 |
+
inputs = aya_processor.apply_chat_template(
|
| 71 |
+
messages,
|
| 72 |
+
padding=True,
|
| 73 |
+
add_generation_prompt=True,
|
| 74 |
+
tokenize=True,
|
| 75 |
+
return_dict=True,
|
| 76 |
+
return_tensors="pt"
|
| 77 |
+
).to(aya_model.device)
|
| 78 |
+
# Set up a streamer for Aya-Vision output
|
| 79 |
+
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
| 80 |
+
generation_kwargs = dict(
|
| 81 |
+
inputs,
|
| 82 |
+
streamer=streamer,
|
| 83 |
+
max_new_tokens=1024,
|
| 84 |
+
do_sample=True,
|
| 85 |
+
temperature=0.3
|
| 86 |
+
)
|
| 87 |
+
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
| 88 |
+
thread.start()
|
| 89 |
+
buffer = ""
|
| 90 |
+
for new_text in streamer:
|
| 91 |
+
buffer += new_text
|
| 92 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 93 |
+
time.sleep(0.01)
|
| 94 |
+
yield buffer
|
| 95 |
+
return
|
| 96 |
|
| 97 |
+
# Load images if provided.
|
| 98 |
if len(files) > 1:
|
| 99 |
images = [load_image(image) for image in files]
|
| 100 |
elif len(files) == 1:
|
|
|
|
| 102 |
else:
|
| 103 |
images = []
|
| 104 |
|
| 105 |
+
# Validate input: require both text and (optionally) image(s).
|
| 106 |
if text == "" and not images:
|
| 107 |
yield "Error: Please input a query and optionally image(s)."
|
| 108 |
return
|
|
|
|
| 110 |
yield "Error: Please input a text query along with the image(s)."
|
| 111 |
return
|
| 112 |
|
| 113 |
+
# Prepare messages for the Qwen2-VL model.
|
| 114 |
messages = [{
|
| 115 |
"role": "user",
|
| 116 |
"content": [
|
|
|
|
| 129 |
padding=True,
|
| 130 |
).to("cuda")
|
| 131 |
|
| 132 |
+
# Set up a streamer for real-time output.
|
| 133 |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
| 134 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 135 |
|
| 136 |
+
# Start generation in a separate thread.
|
| 137 |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
| 138 |
thread.start()
|
| 139 |
|
|
|
|
| 145 |
time.sleep(0.01)
|
| 146 |
yield buffer
|
| 147 |
|
|
|
|
| 148 |
examples = [
|
| 149 |
+
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
|
| 150 |
+
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
| 151 |
+
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
| 152 |
+
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
|
| 153 |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
| 154 |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
| 155 |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
|
|
|
| 156 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 157 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 158 |
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 159 |
]
|
| 160 |
|
|
|
|
| 161 |
demo = gr.ChatInterface(
|
| 162 |
fn=model_inference,
|
| 163 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
examples=examples,
|
| 165 |
textbox=gr.MultimodalTextbox(
|
| 166 |
label="Query Input",
|
| 167 |
file_types=["image"],
|
| 168 |
file_count="multiple",
|
| 169 |
+
placeholder="By default, it runs Qwen2VL OCR, Tag @aya-vision for Aya Vision 8B"
|
| 170 |
),
|
| 171 |
stop_btn="Stop Generation",
|
| 172 |
multimodal=True,
|