20250312 add app
Browse files- app.py +982 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
import colorsys
|
| 5 |
+
import folium
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import os
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
import geopandas as gpd
|
| 11 |
+
from shapely.geometry import Point
|
| 12 |
+
from folium import plugins
|
| 13 |
+
import zipfile
|
| 14 |
+
import tempfile
|
| 15 |
+
import shutil
|
| 16 |
+
|
| 17 |
+
SEED = 42
|
| 18 |
+
|
| 19 |
+
# Initialize global variables
|
| 20 |
+
df = None
|
| 21 |
+
cluster_df = None
|
| 22 |
+
regions_gdf = None
|
| 23 |
+
|
| 24 |
+
# Add global variable for shapefile path
|
| 25 |
+
current_shp_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
| 26 |
+
|
| 27 |
+
def process_upload(file_obj):
|
| 28 |
+
"""Process uploaded CSV file"""
|
| 29 |
+
global df # ์ ์ญ ๋ณ์์์ ๋ช
์
|
| 30 |
+
if file_obj is None:
|
| 31 |
+
return "No file uploaded.", None
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
file_path = file_obj.name
|
| 35 |
+
file_name = os.path.basename(file_path)
|
| 36 |
+
_, ext = os.path.splitext(file_path)
|
| 37 |
+
if ext.lower() != '.csv':
|
| 38 |
+
return "Please upload a CSV file.", None
|
| 39 |
+
|
| 40 |
+
# Try different encodings
|
| 41 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
| 42 |
+
try:
|
| 43 |
+
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
|
| 44 |
+
# Remove rows where 'name' is null
|
| 45 |
+
original_len = len(temp_df)
|
| 46 |
+
temp_df = temp_df.dropna(subset=['name'])
|
| 47 |
+
rows_dropped = original_len - len(temp_df)
|
| 48 |
+
|
| 49 |
+
# Update the global df
|
| 50 |
+
df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
|
| 51 |
+
|
| 52 |
+
return f"File uploaded and processed successfully. {len(df)} records loaded with {encoding} encoding. {rows_dropped} rows with null names were removed.", file_name
|
| 53 |
+
except UnicodeDecodeError:
|
| 54 |
+
continue
|
| 55 |
+
except Exception as e:
|
| 56 |
+
return f"Error processing file with {encoding} encoding: {str(e)}", None
|
| 57 |
+
|
| 58 |
+
return "Could not process the file with any of the supported encodings.", None
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return f"Error processing upload: {str(e)}", None
|
| 61 |
+
|
| 62 |
+
def process_cluster_upload(file_obj):
|
| 63 |
+
"""Process uploaded cluster CSV file"""
|
| 64 |
+
global cluster_df # ์ ์ญ ๋ณ์์์ ๋ช
์
|
| 65 |
+
if file_obj is None:
|
| 66 |
+
return "No cluster file uploaded.", None
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
file_path = file_obj.name
|
| 70 |
+
file_name = os.path.basename(file_path)
|
| 71 |
+
_, ext = os.path.splitext(file_path)
|
| 72 |
+
if ext.lower() != '.csv':
|
| 73 |
+
return "Please upload a CSV file.", None
|
| 74 |
+
|
| 75 |
+
# Try different encodings
|
| 76 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
| 77 |
+
try:
|
| 78 |
+
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
|
| 79 |
+
|
| 80 |
+
# Update the global cluster_df
|
| 81 |
+
cluster_df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
|
| 82 |
+
|
| 83 |
+
return f"Cluster file uploaded and processed successfully. {len(cluster_df)} records loaded with {encoding} encoding.", file_name
|
| 84 |
+
except UnicodeDecodeError:
|
| 85 |
+
continue
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return f"Error processing cluster file with {encoding} encoding: {str(e)}", None
|
| 88 |
+
|
| 89 |
+
return "Could not process the cluster file with any of the supported encodings.", None
|
| 90 |
+
except Exception as e:
|
| 91 |
+
return f"Error processing cluster upload: {str(e)}", None
|
| 92 |
+
|
| 93 |
+
def process_shp_upload(file_obj):
|
| 94 |
+
"""Process uploaded shapefile ZIP"""
|
| 95 |
+
global regions_gdf, current_shp_path
|
| 96 |
+
if file_obj is None:
|
| 97 |
+
return "No file uploaded.", None
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
file_path = file_obj.name
|
| 101 |
+
file_name = os.path.basename(file_path)
|
| 102 |
+
_, ext = os.path.splitext(file_path)
|
| 103 |
+
if ext.lower() != '.zip':
|
| 104 |
+
return "Please upload a ZIP file containing shapefile components.", None
|
| 105 |
+
|
| 106 |
+
# Create a temporary directory to extract files
|
| 107 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 108 |
+
# Extract ZIP contents
|
| 109 |
+
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
| 110 |
+
zip_ref.extractall(temp_dir)
|
| 111 |
+
|
| 112 |
+
# Find .shp file in the extracted contents, excluding __MACOSX directory
|
| 113 |
+
shp_files = []
|
| 114 |
+
for root, _, files in os.walk(temp_dir):
|
| 115 |
+
# Skip __MACOSX directory
|
| 116 |
+
if '__MACOSX' in root:
|
| 117 |
+
continue
|
| 118 |
+
for file in files:
|
| 119 |
+
if file.endswith('.shp'):
|
| 120 |
+
shp_files.append(os.path.join(root, file))
|
| 121 |
+
|
| 122 |
+
if not shp_files:
|
| 123 |
+
return "No .shp file found in the ZIP archive.", None
|
| 124 |
+
|
| 125 |
+
# Use the first .shp file found
|
| 126 |
+
shp_path = shp_files[0]
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
# Read the shapefile
|
| 130 |
+
regions_gdf = gpd.read_file(shp_path).to_crs("EPSG:4326")
|
| 131 |
+
|
| 132 |
+
# Create a permanent directory for the shapefiles if it doesn't exist
|
| 133 |
+
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
|
| 134 |
+
os.makedirs(permanent_dir, exist_ok=True)
|
| 135 |
+
|
| 136 |
+
# Generate a unique subdirectory name using timestamp
|
| 137 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 138 |
+
target_dir = os.path.join(permanent_dir, f'shapefile_{timestamp}')
|
| 139 |
+
os.makedirs(target_dir)
|
| 140 |
+
|
| 141 |
+
# Copy all related files to the permanent location
|
| 142 |
+
shp_base = os.path.splitext(shp_path)[0]
|
| 143 |
+
for ext in ['.shp', '.shx', '.dbf', '.prj', '.cpg', '.sbn', '.sbx']:
|
| 144 |
+
src_file = f"{shp_base}{ext}"
|
| 145 |
+
if os.path.exists(src_file):
|
| 146 |
+
shutil.copy2(src_file, target_dir)
|
| 147 |
+
|
| 148 |
+
# Update the current shapefile path to point to the permanent location
|
| 149 |
+
current_shp_path = os.path.join(target_dir, os.path.basename(shp_path))
|
| 150 |
+
|
| 151 |
+
return f"Shapefile uploaded and processed successfully. {len(regions_gdf)} features loaded.", file_name
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
return f"Error processing shapefile: {str(e)}", None
|
| 155 |
+
|
| 156 |
+
except Exception as e:
|
| 157 |
+
return f"Error processing ZIP upload: {str(e)}", None
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def print_route_info(df, shp_file_path, sample_checkbox=False, path_checkbox=False):
|
| 161 |
+
"""Print route information to console based on checkbox settings"""
|
| 162 |
+
output_lines = []
|
| 163 |
+
|
| 164 |
+
for _, row in df.iterrows():
|
| 165 |
+
if sample_checkbox:
|
| 166 |
+
date_str = pd.to_datetime(row['created']).strftime('%Y-%m-%d %H:%M:%S')
|
| 167 |
+
output_lines.append(f"\nSample: {row['name']} ({date_str})")
|
| 168 |
+
output_lines.append(f" - Vehicle: {row['vehicle_type']}")
|
| 169 |
+
|
| 170 |
+
if path_checkbox:
|
| 171 |
+
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
|
| 172 |
+
output_lines.append(" - Path list:")
|
| 173 |
+
|
| 174 |
+
# Create GeoDataFrame for location lookup
|
| 175 |
+
coords = []
|
| 176 |
+
for loc in route:
|
| 177 |
+
if isinstance(loc, dict):
|
| 178 |
+
if 'latitude' in loc and 'longitude' in loc:
|
| 179 |
+
lat = float(loc['latitude']) / 360000.0
|
| 180 |
+
lng = float(loc['longitude']) / 360000.0
|
| 181 |
+
coords.append((lat, lng))
|
| 182 |
+
|
| 183 |
+
if coords:
|
| 184 |
+
gdf_sample = gpd.GeoDataFrame(
|
| 185 |
+
geometry=[Point(lon, lat) for lat, lon in coords],
|
| 186 |
+
crs="EPSG:4326"
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Load regions shapefile using provided path
|
| 190 |
+
regions_gdf = gpd.read_file(shp_file_path).to_crs("EPSG:4326")
|
| 191 |
+
|
| 192 |
+
# Join with regions
|
| 193 |
+
joined = gpd.sjoin(gdf_sample, regions_gdf, how="left", predicate="within")
|
| 194 |
+
|
| 195 |
+
# Get available columns for location info
|
| 196 |
+
location_columns = []
|
| 197 |
+
for col in ['NAME_1', 'NAME_2', 'NAME_3', 'TYPE_3']:
|
| 198 |
+
if col in joined.columns:
|
| 199 |
+
location_columns.append(col)
|
| 200 |
+
|
| 201 |
+
if location_columns:
|
| 202 |
+
# Create location string based on available columns
|
| 203 |
+
joined['location'] = joined[location_columns].astype(str).apply(
|
| 204 |
+
lambda x: "_".join(str(val) for val in x), axis=1
|
| 205 |
+
)
|
| 206 |
+
else:
|
| 207 |
+
# Fallback to coordinates if no matching columns found
|
| 208 |
+
joined['location'] = joined.geometry.apply(
|
| 209 |
+
lambda x: f"lat: {x.y:.6f}, lon: {x.x:.6f}"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
for _, point in joined.iterrows():
|
| 213 |
+
output_lines.append(f" - {point['location']}")
|
| 214 |
+
|
| 215 |
+
output_lines.append("-" * 50)
|
| 216 |
+
|
| 217 |
+
return "\n".join(output_lines)
|
| 218 |
+
|
| 219 |
+
def get_colors(n, s=1.0, v=1.0):
|
| 220 |
+
colors = []
|
| 221 |
+
for i in range(n):
|
| 222 |
+
h = i / n
|
| 223 |
+
s = s # Maximum saturation
|
| 224 |
+
v = v # Maximum value/brightness
|
| 225 |
+
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
| 226 |
+
colors.append(f'#{int(r*255):02x}{int(g*255):02x}{int(b*255):02x}')
|
| 227 |
+
return colors
|
| 228 |
+
|
| 229 |
+
def cal_paths_folium(df, shp_file_path, n_samples=None, start_d=None, end_d=None, company=None,
|
| 230 |
+
sample_checkbox=False, path_checkbox=False):
|
| 231 |
+
|
| 232 |
+
log_messages = []
|
| 233 |
+
working_df = df.copy()
|
| 234 |
+
log_messages.append(f"Initial dataframe size: {len(working_df)} rows")
|
| 235 |
+
|
| 236 |
+
# Convert created column to datetime and remove timezone information
|
| 237 |
+
working_df['created'] = pd.to_datetime(working_df['created']).dt.tz_localize(None)
|
| 238 |
+
|
| 239 |
+
# Date filtering with better error handling and debugging
|
| 240 |
+
if start_d:
|
| 241 |
+
try:
|
| 242 |
+
start_d = pd.to_datetime(start_d).normalize()
|
| 243 |
+
log_messages.append(f"Filtering from date: {start_d}")
|
| 244 |
+
working_df = working_df[working_df['created'] >= start_d]
|
| 245 |
+
log_messages.append(f"After start date filter: {len(working_df)} rows")
|
| 246 |
+
except Exception as e:
|
| 247 |
+
log_messages.append(f"Error in start date filtering: {str(e)}")
|
| 248 |
+
|
| 249 |
+
if end_d:
|
| 250 |
+
try:
|
| 251 |
+
end_d = pd.to_datetime(end_d).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
|
| 252 |
+
log_messages.append(f"Filtering until date: {end_d}")
|
| 253 |
+
working_df = working_df[working_df['created'] <= end_d]
|
| 254 |
+
log_messages.append(f"After end date filter: {len(working_df)} rows")
|
| 255 |
+
except Exception as e:
|
| 256 |
+
log_messages.append(f"Error in end date filtering: {str(e)}")
|
| 257 |
+
|
| 258 |
+
# Company filtering with better error handling and debugging
|
| 259 |
+
if company and company.strip():
|
| 260 |
+
try:
|
| 261 |
+
log_messages.append(f"Filtering for company: {company}")
|
| 262 |
+
working_df = working_df[working_df['name'].str.contains(company, na=False)]
|
| 263 |
+
log_messages.append(f"After company filter: {len(working_df)} rows")
|
| 264 |
+
except Exception as e:
|
| 265 |
+
log_messages.append(f"Error in company filtering: {str(e)}")
|
| 266 |
+
|
| 267 |
+
# Sample n
|
| 268 |
+
if n_samples and len(working_df) > 0:
|
| 269 |
+
working_df = working_df.sample(n=min(n_samples, len(working_df)), random_state=42)
|
| 270 |
+
log_messages.append(f"After sampling: {len(working_df)} rows")
|
| 271 |
+
|
| 272 |
+
# Print column names and a few rows for debugging
|
| 273 |
+
log_messages.append(f"Columns in dataframe: {list(working_df.columns)}")
|
| 274 |
+
if len(working_df) > 0:
|
| 275 |
+
log_messages.append("First row sample:")
|
| 276 |
+
log_messages.append(str(working_df.iloc[0]))
|
| 277 |
+
|
| 278 |
+
# Generate colors
|
| 279 |
+
colors = get_colors(max(1, len(working_df)), s=0.5, v=1.0)
|
| 280 |
+
|
| 281 |
+
# Print route information
|
| 282 |
+
if sample_checkbox or path_checkbox:
|
| 283 |
+
console_output = print_route_info(working_df, shp_file_path, sample_checkbox, path_checkbox)
|
| 284 |
+
log_messages.append(console_output)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Generate route data
|
| 288 |
+
routes = []
|
| 289 |
+
for i, (_, row) in enumerate(working_df.iterrows()):
|
| 290 |
+
# Convert route to dict/list if it's a string
|
| 291 |
+
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
|
| 292 |
+
|
| 293 |
+
# Handle different possible formats of coordinates
|
| 294 |
+
coords = []
|
| 295 |
+
for loc in route:
|
| 296 |
+
if isinstance(loc, dict):
|
| 297 |
+
# Handle 'latitude/longitude' format
|
| 298 |
+
if 'latitude' in loc and 'longitude' in loc:
|
| 299 |
+
lat = float(loc['latitude'])
|
| 300 |
+
lng = float(loc['longitude'])
|
| 301 |
+
|
| 302 |
+
# Scale coordinates if needed
|
| 303 |
+
if abs(lat) > 90 or abs(lng) > 180:
|
| 304 |
+
lat /= 360000.0
|
| 305 |
+
lng /= 360000.0
|
| 306 |
+
|
| 307 |
+
coords.append([lat, lng])
|
| 308 |
+
|
| 309 |
+
# Handle 'lat/lng' format
|
| 310 |
+
elif 'lat' in loc and 'lng' in loc:
|
| 311 |
+
lat = float(loc['lat'])
|
| 312 |
+
lng = float(loc['lng'])
|
| 313 |
+
|
| 314 |
+
# Scale coordinates if needed
|
| 315 |
+
if abs(lat) > 90 or abs(lng) > 180:
|
| 316 |
+
lat /= 360000.0
|
| 317 |
+
lng /= 360000.0
|
| 318 |
+
|
| 319 |
+
coords.append([lat, lng])
|
| 320 |
+
|
| 321 |
+
if coords:
|
| 322 |
+
routes.append({
|
| 323 |
+
'coordinates': coords,
|
| 324 |
+
'color': colors[i % len(colors)],
|
| 325 |
+
'company': str(row.get('name', 'Unknown')),
|
| 326 |
+
'created': row['created'].strftime('%Y-%m-%d %H:%M:%S')
|
| 327 |
+
})
|
| 328 |
+
|
| 329 |
+
print(f"Generated {len(routes)} valid routes")
|
| 330 |
+
log_messages.append(f"Generated {len(routes)} valid routes")
|
| 331 |
+
|
| 332 |
+
# routes์ ํจ๊ป ๋ก๊ทธ ๋ฉ์์ง๋ ๋ฐํ
|
| 333 |
+
return routes, "\n".join(log_messages)
|
| 334 |
+
|
| 335 |
+
def plot_paths_folium(routes, cluster_df=cluster_df, cluster_num_samples=None, cluster_company_search=None, cluster_date_start=None, cluster_date_end=None, map_location="Seoul", map_type="Satellite map", path_type="point+line", brightness=100):
|
| 336 |
+
"""Plot routes on a Folium map with customizable settings"""
|
| 337 |
+
# Map center coordinates based on location selection
|
| 338 |
+
centers = {
|
| 339 |
+
"Korea": (36.5, 127.5),
|
| 340 |
+
"Seoul": (37.5665, 126.9780),
|
| 341 |
+
"Busan": (35.1796, 129.0756)
|
| 342 |
+
}
|
| 343 |
+
zoom_levels = {
|
| 344 |
+
"Korea": 7,
|
| 345 |
+
"Seoul": 12,
|
| 346 |
+
"Busan": 12
|
| 347 |
+
}
|
| 348 |
+
|
| 349 |
+
center = centers.get(map_location, centers["Korea"])
|
| 350 |
+
zoom_start = zoom_levels.get(map_location, 7)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# Create map with appropriate type
|
| 357 |
+
if map_type == "Satellite map":
|
| 358 |
+
m = folium.Map(location=center, zoom_start=zoom_start,
|
| 359 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
| 360 |
+
attr='Esri')
|
| 361 |
+
else:
|
| 362 |
+
m = folium.Map(location=center, zoom_start=zoom_start)
|
| 363 |
+
|
| 364 |
+
path_fg = folium.FeatureGroup(name="Path").add_to(m)
|
| 365 |
+
|
| 366 |
+
# Add routes to the map
|
| 367 |
+
for route in routes:
|
| 368 |
+
if path_type in ["point", "point+line"] and len(route['coordinates']) > 0:
|
| 369 |
+
for i, coord in enumerate(route['coordinates']):
|
| 370 |
+
x_icon_html = f'''
|
| 371 |
+
<div style="
|
| 372 |
+
color: {route['color']};
|
| 373 |
+
font-weight: bold;
|
| 374 |
+
font-size: 10px;
|
| 375 |
+
transform: translate(2px, -3px);">
|
| 376 |
+
ร
|
| 377 |
+
</div>
|
| 378 |
+
'''
|
| 379 |
+
folium.DivIcon(
|
| 380 |
+
html=x_icon_html
|
| 381 |
+
).add_to(folium.Marker(
|
| 382 |
+
location=coord,
|
| 383 |
+
popup=f"{route.get('company', 'Unknown')} - Point {i+1}"
|
| 384 |
+
).add_to(path_fg))
|
| 385 |
+
|
| 386 |
+
if path_type in ["line", "point+line"]:
|
| 387 |
+
folium.PolyLine(
|
| 388 |
+
route['coordinates'],
|
| 389 |
+
color=route['color'],
|
| 390 |
+
weight=0.5,
|
| 391 |
+
dash_array='1, 1', # ์ ์ ์คํ์ผ (์ ๊ธธ์ด, ๊ฐ๊ฒฉ)
|
| 392 |
+
popup=route.get('company', 'Unknown')
|
| 393 |
+
).add_to(path_fg)
|
| 394 |
+
|
| 395 |
+
cluster_df['t_pickup'] = pd.to_datetime(cluster_df['t_pickup'])
|
| 396 |
+
if cluster_date_start:
|
| 397 |
+
# Convert string to datetime without timezone
|
| 398 |
+
cluster_date_start = pd.to_datetime(cluster_date_start).normalize()
|
| 399 |
+
cluster_df = cluster_df[cluster_df['t_pickup'] >= cluster_date_start]
|
| 400 |
+
|
| 401 |
+
if cluster_date_end:
|
| 402 |
+
# Convert string to datetime without timezone
|
| 403 |
+
cluster_date_end = pd.to_datetime(cluster_date_end).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
|
| 404 |
+
cluster_df = cluster_df[cluster_df['t_pickup'] <= cluster_date_end]
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
if cluster_company_search:
|
| 408 |
+
cluster_df = cluster_df.query("company.str.contains(@cluster_company_search)")
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
if cluster_num_samples:
|
| 412 |
+
cluster_df = cluster_df.sample(n=min(cluster_num_samples, len(cluster_df)), random_state=42)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
cluster_geo_fg = folium.FeatureGroup(name="Cluster Geo").add_to(m)
|
| 417 |
+
cluster_pmi_fg = folium.FeatureGroup(name="Cluster PMI", show=False).add_to(m)
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
cluster_geo_values = cluster_df['cluster_geo'].unique()
|
| 421 |
+
cluster_pmi_values = cluster_df['cluster_pmi'].unique()
|
| 422 |
+
|
| 423 |
+
# Create a mapping from cluster numbers to color indices
|
| 424 |
+
cluster_geo_mapping = {val: idx for idx, val in enumerate(sorted(cluster_geo_values))}
|
| 425 |
+
cluster_pmi_mapping = {val: idx for idx, val in enumerate(sorted(cluster_pmi_values))}
|
| 426 |
+
|
| 427 |
+
cluster_geo_colors = get_colors(len(cluster_geo_values))
|
| 428 |
+
cluster_pmi_colors = get_colors(len(cluster_pmi_values))
|
| 429 |
+
|
| 430 |
+
for _, row in cluster_df.iterrows():
|
| 431 |
+
# Geo cluster markers remain as circles
|
| 432 |
+
folium.CircleMarker(
|
| 433 |
+
location=(row['latitude'], row['longitude']),
|
| 434 |
+
popup=f"{row['company']} - Cluster {row['cluster_geo']}",
|
| 435 |
+
radius=3,
|
| 436 |
+
color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
|
| 437 |
+
fill=True,
|
| 438 |
+
fill_color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
|
| 439 |
+
).add_to(cluster_geo_fg)
|
| 440 |
+
|
| 441 |
+
# PMI cluster markers as stars
|
| 442 |
+
star_html = f'''
|
| 443 |
+
<div style="
|
| 444 |
+
color: {cluster_pmi_colors[cluster_pmi_mapping[row['cluster_pmi']]]};
|
| 445 |
+
font-size: 16px;
|
| 446 |
+
transform: translate(-1px, -7px);
|
| 447 |
+
text-shadow: 1px 1px 2px black;">
|
| 448 |
+
โ
|
| 449 |
+
</div>
|
| 450 |
+
'''
|
| 451 |
+
folium.DivIcon(
|
| 452 |
+
html=star_html
|
| 453 |
+
).add_to(folium.Marker(
|
| 454 |
+
location=(row['latitude'], row['longitude']),
|
| 455 |
+
popup=f"{row['company']} - Cluster {row['cluster_pmi']}",
|
| 456 |
+
).add_to(cluster_pmi_fg))
|
| 457 |
+
|
| 458 |
+
# Group points by cluster for both geo and pmi
|
| 459 |
+
geo_clusters = {}
|
| 460 |
+
pmi_clusters = {}
|
| 461 |
+
|
| 462 |
+
for _, row in cluster_df.iterrows():
|
| 463 |
+
# For geo clusters
|
| 464 |
+
geo_cluster = row['cluster_geo']
|
| 465 |
+
if geo_cluster not in geo_clusters:
|
| 466 |
+
geo_clusters[geo_cluster] = []
|
| 467 |
+
geo_clusters[geo_cluster].append((row['latitude'], row['longitude']))
|
| 468 |
+
|
| 469 |
+
# For pmi clusters
|
| 470 |
+
pmi_cluster = row['cluster_pmi']
|
| 471 |
+
if pmi_cluster not in pmi_clusters:
|
| 472 |
+
pmi_clusters[pmi_cluster] = []
|
| 473 |
+
pmi_clusters[pmi_cluster].append((row['latitude'], row['longitude']))
|
| 474 |
+
|
| 475 |
+
# Function to create a closed path by connecting nearest points
|
| 476 |
+
def create_closed_path(points):
|
| 477 |
+
if len(points) <= 1:
|
| 478 |
+
return points
|
| 479 |
+
|
| 480 |
+
# Start with the first point
|
| 481 |
+
path = [points[0]]
|
| 482 |
+
remaining_points = points[1:]
|
| 483 |
+
|
| 484 |
+
# Keep finding the closest point until none are left
|
| 485 |
+
while remaining_points:
|
| 486 |
+
current = path[-1]
|
| 487 |
+
|
| 488 |
+
# Find closest point to the current point
|
| 489 |
+
closest_idx = 0
|
| 490 |
+
closest_dist = float('inf')
|
| 491 |
+
|
| 492 |
+
for i, point in enumerate(remaining_points):
|
| 493 |
+
dist = ((current[0] - point[0])**2 + (current[1] - point[1])**2)**0.5
|
| 494 |
+
if dist < closest_dist:
|
| 495 |
+
closest_dist = dist
|
| 496 |
+
closest_idx = i
|
| 497 |
+
|
| 498 |
+
# Add the closest point to the path
|
| 499 |
+
path.append(remaining_points[closest_idx])
|
| 500 |
+
remaining_points.pop(closest_idx)
|
| 501 |
+
|
| 502 |
+
# Connect back to the first point to close the path
|
| 503 |
+
path.append(path[0])
|
| 504 |
+
return path
|
| 505 |
+
|
| 506 |
+
# Create polylines for geo clusters
|
| 507 |
+
for cluster_num, points in geo_clusters.items():
|
| 508 |
+
if len(points) >= 2: # Need at least 2 points to make a line
|
| 509 |
+
path = create_closed_path(points)
|
| 510 |
+
folium.PolyLine(
|
| 511 |
+
path,
|
| 512 |
+
color=cluster_geo_colors[cluster_geo_mapping[cluster_num]],
|
| 513 |
+
weight=2,
|
| 514 |
+
).add_to(cluster_geo_fg)
|
| 515 |
+
|
| 516 |
+
# Create polylines for pmi clusters
|
| 517 |
+
for cluster_num, points in pmi_clusters.items():
|
| 518 |
+
if len(points) >= 2: # Need at least 2 points to make a line
|
| 519 |
+
path = create_closed_path(points)
|
| 520 |
+
folium.PolyLine(
|
| 521 |
+
path,
|
| 522 |
+
color=cluster_pmi_colors[cluster_pmi_mapping[cluster_num]],
|
| 523 |
+
weight=2,
|
| 524 |
+
).add_to(cluster_pmi_fg)
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
# Create custom legend HTML with three scrollable sections
|
| 533 |
+
legend_html = '''
|
| 534 |
+
<div style="position: fixed;
|
| 535 |
+
top: 120px;
|
| 536 |
+
right: 10px;
|
| 537 |
+
width: 200px;
|
| 538 |
+
background-color: transparent;
|
| 539 |
+
z-index: 1000;">
|
| 540 |
+
|
| 541 |
+
<!-- Path Legend -->
|
| 542 |
+
<div style="margin-bottom: 5px;
|
| 543 |
+
background-color: white;
|
| 544 |
+
border: 2px solid grey;
|
| 545 |
+
font-size: 10px;">
|
| 546 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Path Routes</div>
|
| 547 |
+
<div style="height: 200px;
|
| 548 |
+
overflow-y: auto;
|
| 549 |
+
padding: 10px;">
|
| 550 |
+
'''
|
| 551 |
+
|
| 552 |
+
# Add path routes to the legend with larger X symbol
|
| 553 |
+
for route in routes:
|
| 554 |
+
legend_html += f'''
|
| 555 |
+
<div style="display: flex;
|
| 556 |
+
align-items: center;
|
| 557 |
+
margin: 5px 0;">
|
| 558 |
+
<div style="width: 20px;
|
| 559 |
+
height: 20px;
|
| 560 |
+
margin-right: 5px;
|
| 561 |
+
flex-shrink: 0;
|
| 562 |
+
display: flex;
|
| 563 |
+
align-items: center;
|
| 564 |
+
justify-content: center;
|
| 565 |
+
color: {route['color']};
|
| 566 |
+
font-weight: bold;
|
| 567 |
+
font-size: 20px;">
|
| 568 |
+
ร
|
| 569 |
+
</div>
|
| 570 |
+
<span style="word-break: break-all;">
|
| 571 |
+
{route.get('company', 'Unknown')}_{route.get('created', '')}
|
| 572 |
+
</span>
|
| 573 |
+
</div>
|
| 574 |
+
'''
|
| 575 |
+
|
| 576 |
+
# Get unique cluster values from already filtered cluster_df
|
| 577 |
+
visible_cluster_geo = sorted(cluster_df['cluster_geo'].unique())
|
| 578 |
+
visible_cluster_pmi = sorted(cluster_df['cluster_pmi'].unique())
|
| 579 |
+
|
| 580 |
+
# Add Cluster Geo section with larger circle symbol
|
| 581 |
+
legend_html += '''
|
| 582 |
+
</div>
|
| 583 |
+
</div>
|
| 584 |
+
|
| 585 |
+
<!-- Cluster Geo Legend -->
|
| 586 |
+
<div style="margin-bottom: 5px;
|
| 587 |
+
background-color: white;
|
| 588 |
+
border: 2px solid grey;
|
| 589 |
+
font-size: 10px;">
|
| 590 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster Geo</div>
|
| 591 |
+
<div style="height: 200px;
|
| 592 |
+
overflow-y: auto;
|
| 593 |
+
padding: 10px;">
|
| 594 |
+
'''
|
| 595 |
+
|
| 596 |
+
# Add only visible cluster geo information with larger circles
|
| 597 |
+
for cluster_value in visible_cluster_geo:
|
| 598 |
+
color = cluster_geo_colors[cluster_geo_mapping[cluster_value]]
|
| 599 |
+
legend_html += f'''
|
| 600 |
+
<div style="display: flex;
|
| 601 |
+
align-items: center;
|
| 602 |
+
margin: 5px 0;">
|
| 603 |
+
<div style="width: 20px;
|
| 604 |
+
height: 20px;
|
| 605 |
+
margin-right: 5px;
|
| 606 |
+
flex-shrink: 0;
|
| 607 |
+
display: flex;
|
| 608 |
+
align-items: center;
|
| 609 |
+
justify-content: center;">
|
| 610 |
+
<div style="width: 10px;
|
| 611 |
+
height: 10px;
|
| 612 |
+
background-color: {color};
|
| 613 |
+
border-radius: 50%;"></div>
|
| 614 |
+
</div>
|
| 615 |
+
<span style="word-break: break-all;">
|
| 616 |
+
Cluster {cluster_value}
|
| 617 |
+
</span>
|
| 618 |
+
</div>
|
| 619 |
+
'''
|
| 620 |
+
|
| 621 |
+
# Add Cluster PMI section with larger star symbol
|
| 622 |
+
legend_html += '''
|
| 623 |
+
</div>
|
| 624 |
+
</div>
|
| 625 |
+
|
| 626 |
+
<!-- Cluster PMI Legend -->
|
| 627 |
+
<div style="background-color: white;
|
| 628 |
+
border: 2px solid grey;
|
| 629 |
+
font-size: 10px;">
|
| 630 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster PMI</div>
|
| 631 |
+
<div style="height: 200px;
|
| 632 |
+
overflow-y: auto;
|
| 633 |
+
padding: 10px;">
|
| 634 |
+
'''
|
| 635 |
+
|
| 636 |
+
# Add only visible cluster PMI information with larger stars
|
| 637 |
+
for cluster_value in visible_cluster_pmi:
|
| 638 |
+
color = cluster_pmi_colors[cluster_pmi_mapping[cluster_value]]
|
| 639 |
+
legend_html += f'''
|
| 640 |
+
<div style="display: flex;
|
| 641 |
+
align-items: center;
|
| 642 |
+
margin: 5px 0;">
|
| 643 |
+
<div style="width: 20px;
|
| 644 |
+
height: 20px;
|
| 645 |
+
margin-right: 5px;
|
| 646 |
+
flex-shrink: 0;
|
| 647 |
+
display: flex;
|
| 648 |
+
align-items: center;
|
| 649 |
+
justify-content: center;
|
| 650 |
+
color: {color};
|
| 651 |
+
font-size: 18px;
|
| 652 |
+
text-shadow: 1px 1px 2px black;">
|
| 653 |
+
โ
|
| 654 |
+
</div>
|
| 655 |
+
<span style="word-break: break-all;">
|
| 656 |
+
Cluster {cluster_value}
|
| 657 |
+
</span>
|
| 658 |
+
</div>
|
| 659 |
+
'''
|
| 660 |
+
|
| 661 |
+
legend_html += '''
|
| 662 |
+
</div>
|
| 663 |
+
</div>
|
| 664 |
+
</div>
|
| 665 |
+
'''
|
| 666 |
+
|
| 667 |
+
folium.LayerControl(collapsed=False).add_to(m)
|
| 668 |
+
|
| 669 |
+
folium.plugins.Fullscreen(
|
| 670 |
+
position="bottomright",
|
| 671 |
+
title="Expand me",
|
| 672 |
+
title_cancel="Exit me",
|
| 673 |
+
force_separate_button=True,
|
| 674 |
+
).add_to(m)
|
| 675 |
+
|
| 676 |
+
# Add the legend to the map
|
| 677 |
+
m.get_root().html.add_child(folium.Element(legend_html))
|
| 678 |
+
|
| 679 |
+
# Add custom CSS for brightness control - only affecting the satellite tiles
|
| 680 |
+
custom_css = f"""
|
| 681 |
+
<style>
|
| 682 |
+
.leaflet-tile-pane img {{
|
| 683 |
+
filter: brightness({brightness}%);
|
| 684 |
+
}}
|
| 685 |
+
</style>
|
| 686 |
+
"""
|
| 687 |
+
m.get_root().header.add_child(folium.Element(custom_css))
|
| 688 |
+
|
| 689 |
+
return m._repr_html_()
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
def update_map(map_location, map_type, path_type, n_samples, company, date_start, date_end,
|
| 693 |
+
cluster_num_samples, cluster_company_search, cluster_date_start, cluster_date_end,
|
| 694 |
+
pick_all_date, sample_checkbox, path_checkbox, brightness_slider):
|
| 695 |
+
"""Update the map based on user selections"""
|
| 696 |
+
global df, cluster_df, regions_gdf, current_shp_path
|
| 697 |
+
|
| 698 |
+
log_messages = []
|
| 699 |
+
log_messages.append(f"Updating map with settings: Location={map_location}, Type={map_type}, Path={path_type}")
|
| 700 |
+
|
| 701 |
+
# Check if data is loaded
|
| 702 |
+
if df is None:
|
| 703 |
+
log_messages.append("Loading default data because df is None")
|
| 704 |
+
df_loaded, msg, _ = load_default_data()
|
| 705 |
+
if df_loaded is None:
|
| 706 |
+
return "No data available. Please upload a CSV file.", None
|
| 707 |
+
else:
|
| 708 |
+
log_messages.append(f"Using existing df with {len(df)} rows")
|
| 709 |
+
|
| 710 |
+
try:
|
| 711 |
+
# Process date filters with better error handling
|
| 712 |
+
start_d = None
|
| 713 |
+
end_d = None
|
| 714 |
+
|
| 715 |
+
if not pick_all_date:
|
| 716 |
+
if date_start and date_start.strip():
|
| 717 |
+
start_d = date_start
|
| 718 |
+
log_messages.append(f"Using start date: {start_d}")
|
| 719 |
+
if date_end and date_end.strip():
|
| 720 |
+
end_d = date_end
|
| 721 |
+
log_messages.append(f"Using end date: {end_d}")
|
| 722 |
+
else:
|
| 723 |
+
log_messages.append("Using all dates")
|
| 724 |
+
|
| 725 |
+
# Check if shapefile exists at current_shp_path
|
| 726 |
+
if not os.path.exists(current_shp_path):
|
| 727 |
+
log_messages.append(f"Warning: Shapefile not found at {current_shp_path}")
|
| 728 |
+
# Try to find the most recently uploaded shapefile
|
| 729 |
+
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
|
| 730 |
+
if os.path.exists(permanent_dir):
|
| 731 |
+
subdirs = [os.path.join(permanent_dir, d) for d in os.listdir(permanent_dir)
|
| 732 |
+
if os.path.isdir(os.path.join(permanent_dir, d))]
|
| 733 |
+
if subdirs:
|
| 734 |
+
# Get the most recent directory
|
| 735 |
+
latest_dir = max(subdirs, key=os.path.getctime)
|
| 736 |
+
# Find .shp file in that directory
|
| 737 |
+
shp_files = [f for f in os.listdir(latest_dir) if f.endswith('.shp')]
|
| 738 |
+
if shp_files:
|
| 739 |
+
current_shp_path = os.path.join(latest_dir, shp_files[0])
|
| 740 |
+
log_messages.append(f"Using most recent shapefile: {current_shp_path}")
|
| 741 |
+
|
| 742 |
+
# Calculate routes with full error reporting
|
| 743 |
+
try:
|
| 744 |
+
routes, cal_logs = cal_paths_folium(df, current_shp_path, n_samples=n_samples,
|
| 745 |
+
start_d=start_d, end_d=end_d,
|
| 746 |
+
company=company, sample_checkbox=sample_checkbox,
|
| 747 |
+
path_checkbox=path_checkbox)
|
| 748 |
+
log_messages.append(cal_logs)
|
| 749 |
+
except Exception as e:
|
| 750 |
+
log_messages.append(f"Error in route calculation: {str(e)}")
|
| 751 |
+
import traceback
|
| 752 |
+
log_messages.append(traceback.format_exc())
|
| 753 |
+
return "\n".join(log_messages), None
|
| 754 |
+
|
| 755 |
+
# Check if we have routes to display
|
| 756 |
+
if not routes:
|
| 757 |
+
log_messages.append("No routes to display after applying filters.")
|
| 758 |
+
empty_map = folium.Map(location=(36.5, 127.5), zoom_start=7)
|
| 759 |
+
return "\n".join(log_messages), empty_map._repr_html_()
|
| 760 |
+
|
| 761 |
+
# Create map
|
| 762 |
+
html_output = plot_paths_folium(routes, cluster_df, cluster_num_samples, cluster_company_search,
|
| 763 |
+
cluster_date_start, cluster_date_end, map_location, map_type, path_type, brightness_slider)
|
| 764 |
+
|
| 765 |
+
return "\n".join(log_messages), html_output
|
| 766 |
+
|
| 767 |
+
except Exception as e:
|
| 768 |
+
error_msg = f"Error updating map: {str(e)}"
|
| 769 |
+
log_messages.append(error_msg)
|
| 770 |
+
import traceback
|
| 771 |
+
log_messages.append(traceback.format_exc())
|
| 772 |
+
return "\n".join(log_messages), None
|
| 773 |
+
|
| 774 |
+
# Initialize data
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
def load_default_data():
|
| 778 |
+
"""Load the default dataset"""
|
| 779 |
+
global df, cluster_df, regions_gdf
|
| 780 |
+
default_file = 'data/20250122_Order_List_202411_12_CJW.csv'
|
| 781 |
+
default_cluster_file = 'data/path_clustering_2024.csv'
|
| 782 |
+
default_gadm_shp_file = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
| 783 |
+
|
| 784 |
+
messages = []
|
| 785 |
+
path_filename = ""
|
| 786 |
+
cluster_filename = ""
|
| 787 |
+
shp_filename = ""
|
| 788 |
+
|
| 789 |
+
# Try different encodings for the main file
|
| 790 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
| 791 |
+
try:
|
| 792 |
+
df = pd.read_csv(default_file, engine='python', encoding=encoding)
|
| 793 |
+
path_filename = os.path.basename(default_file)
|
| 794 |
+
messages.append(f"Path file loaded successfully: {path_filename}")
|
| 795 |
+
break
|
| 796 |
+
except UnicodeDecodeError:
|
| 797 |
+
continue
|
| 798 |
+
except Exception as e:
|
| 799 |
+
messages.append(f"Error loading path file: {str(e)}")
|
| 800 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
| 801 |
+
|
| 802 |
+
# Try different encodings for the cluster file
|
| 803 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
| 804 |
+
try:
|
| 805 |
+
cluster_df = pd.read_csv(default_cluster_file, engine='python', encoding=encoding)
|
| 806 |
+
cluster_filename = os.path.basename(default_cluster_file)
|
| 807 |
+
messages.append(f"Cluster file loaded successfully: {cluster_filename}")
|
| 808 |
+
break
|
| 809 |
+
except UnicodeDecodeError:
|
| 810 |
+
continue
|
| 811 |
+
except Exception as e:
|
| 812 |
+
messages.append(f"Error loading cluster file: {str(e)}")
|
| 813 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
| 814 |
+
|
| 815 |
+
# Load shapefile
|
| 816 |
+
try:
|
| 817 |
+
regions_gdf = gpd.read_file(default_gadm_shp_file).to_crs("EPSG:4326")
|
| 818 |
+
shp_filename = os.path.basename(default_gadm_shp_file)
|
| 819 |
+
messages.append(f"Shapefile loaded successfully: {shp_filename}")
|
| 820 |
+
except Exception as e:
|
| 821 |
+
messages.append(f"Error loading shapefile: {str(e)}")
|
| 822 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
| 823 |
+
|
| 824 |
+
return df, cluster_df, regions_gdf, "\n".join(messages), path_filename, cluster_filename, shp_filename
|
| 825 |
+
|
| 826 |
+
init_n_samples = 20
|
| 827 |
+
init_path_company_search = "๋ฐฑ๋
ํํธ"
|
| 828 |
+
init_path_date_start = "2024-12-01"
|
| 829 |
+
init_path_date_end = "2024-12-31"
|
| 830 |
+
init_cluster_num_samples = 200
|
| 831 |
+
init_cluster_date_start = "2025-02-24"
|
| 832 |
+
init_cluster_date_end = "2025-02-24"
|
| 833 |
+
init_brightness = 50
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
init_df, init_cluster_df, init_regions_gdf, init_msg, init_path_file, init_cluster_file, init_shp_file = load_default_data()
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
# Initial map
|
| 840 |
+
init_shp_file_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
| 841 |
+
init_routes, _ = cal_paths_folium(df, init_shp_file_path, n_samples=init_n_samples,
|
| 842 |
+
start_d=init_path_date_start, end_d=init_path_date_end,
|
| 843 |
+
company=init_path_company_search) if df is not None else ([], "")
|
| 844 |
+
init_html = plot_paths_folium(routes=init_routes, cluster_df=init_cluster_df, cluster_num_samples=init_cluster_num_samples, cluster_date_start=init_cluster_date_start, cluster_date_end=init_cluster_date_end, brightness=init_brightness) if init_routes else None
|
| 845 |
+
|
| 846 |
+
# Create Gradio interface
|
| 847 |
+
with gr.Blocks() as demo:
|
| 848 |
+
# Layout
|
| 849 |
+
with gr.Column():
|
| 850 |
+
# Map controls
|
| 851 |
+
with gr.Row():
|
| 852 |
+
map_location = gr.Radio(
|
| 853 |
+
["Korea", "Seoul", "Busan"],
|
| 854 |
+
label="Map Location Shortcuts",
|
| 855 |
+
value="Seoul"
|
| 856 |
+
)
|
| 857 |
+
map_type = gr.Radio(
|
| 858 |
+
["Normal map", "Satellite map"],
|
| 859 |
+
label="Map Type",
|
| 860 |
+
value="Satellite map"
|
| 861 |
+
)
|
| 862 |
+
path_type = gr.Radio(
|
| 863 |
+
["point", "line", "point+line"],
|
| 864 |
+
label="Path Type",
|
| 865 |
+
value="point+line"
|
| 866 |
+
)
|
| 867 |
+
brightness_slider = gr.Slider(
|
| 868 |
+
minimum=1,
|
| 869 |
+
maximum=300,
|
| 870 |
+
value=50,
|
| 871 |
+
step=1,
|
| 872 |
+
label="Map Brightness (%)"
|
| 873 |
+
)
|
| 874 |
+
|
| 875 |
+
# Map display
|
| 876 |
+
map_html = gr.HTML(init_html, elem_classes=["map-container"])
|
| 877 |
+
|
| 878 |
+
generate_btn = gr.Button("Generate Map")
|
| 879 |
+
|
| 880 |
+
# Filter controls
|
| 881 |
+
with gr.Column():
|
| 882 |
+
with gr.Row():
|
| 883 |
+
path_file_upload = gr.File(label="Upload Path File", height=89, file_count="single", scale=1)
|
| 884 |
+
path_current_file = gr.Textbox(label="Current Path File", value=init_path_file, scale=4)
|
| 885 |
+
with gr.Row():
|
| 886 |
+
cluster_file_upload = gr.File(label="Upload Cluster File", height=89, file_count="single", scale=1)
|
| 887 |
+
cluster_current_file = gr.Textbox(label="Current Cluster File", value=init_cluster_file, scale=4)
|
| 888 |
+
with gr.Row():
|
| 889 |
+
gadm_shp_upload = gr.File(label="Upload gadm .zip File", height=89, file_count="single", scale=1)
|
| 890 |
+
gadm_shp_current_file = gr.Textbox(label="Current gadm .zip File", value=init_shp_file, scale=4)
|
| 891 |
+
with gr.Row():
|
| 892 |
+
with gr.Row():
|
| 893 |
+
path_num_samples = gr.Number(label="Path Sample Count", precision=0, value=20, scale=1, minimum=1, maximum=200)
|
| 894 |
+
path_company_search = gr.Textbox(label="Path Company Search", value="๋ฐฑ๋
ํํธ", scale=4)
|
| 895 |
+
with gr.Row():
|
| 896 |
+
cluster_num_samples = gr.Number(label="Cluster Sample Count", precision=0, value=200, scale=1, minimum=1, maximum=200)
|
| 897 |
+
cluster_company_search = gr.Textbox(label="Cluster Company Search", scale=4)
|
| 898 |
+
# Date range
|
| 899 |
+
with gr.Row():
|
| 900 |
+
with gr.Row():
|
| 901 |
+
path_date_start = gr.Textbox(label="Path Start Date", placeholder="YYYY-MM-DD", value="2024-12-01")
|
| 902 |
+
path_date_end = gr.Textbox(label="Path End Date", placeholder="YYYY-MM-DD", value="2024-12-31")
|
| 903 |
+
with gr.Row():
|
| 904 |
+
cluster_date_start = gr.Textbox(label="Cluster Start Date", placeholder="YYYY-MM-DD", value="2025-02-24")
|
| 905 |
+
cluster_date_end = gr.Textbox(label="Cluster End Date", placeholder="YYYY-MM-DD", value="2025-02-24")
|
| 906 |
+
|
| 907 |
+
# Checkboxes
|
| 908 |
+
with gr.Row():
|
| 909 |
+
pick_all_date = gr.Checkbox(label="Select All Dates")
|
| 910 |
+
sample_checkbox = gr.Checkbox(label="Print Sample", value=True)
|
| 911 |
+
path_checkbox = gr.Checkbox(label="Print Path")
|
| 912 |
+
|
| 913 |
+
# Console
|
| 914 |
+
console = gr.Textbox(
|
| 915 |
+
label="Console",
|
| 916 |
+
lines=10,
|
| 917 |
+
max_lines=100,
|
| 918 |
+
interactive=False,
|
| 919 |
+
value=init_msg,
|
| 920 |
+
elem_classes=["console"]
|
| 921 |
+
)
|
| 922 |
+
|
| 923 |
+
# Style
|
| 924 |
+
gr.Markdown("""
|
| 925 |
+
<style>
|
| 926 |
+
.map-container {
|
| 927 |
+
margin: 10px;
|
| 928 |
+
width: calc(100% - 20px);
|
| 929 |
+
height: 600px;
|
| 930 |
+
}
|
| 931 |
+
.console {
|
| 932 |
+
background-color: black;
|
| 933 |
+
color: white;
|
| 934 |
+
font-family: monospace;
|
| 935 |
+
overflow-y: scroll;
|
| 936 |
+
}
|
| 937 |
+
</style>
|
| 938 |
+
""")
|
| 939 |
+
|
| 940 |
+
# Event handlers
|
| 941 |
+
path_file_upload.upload(
|
| 942 |
+
fn=process_upload,
|
| 943 |
+
inputs=[path_file_upload],
|
| 944 |
+
outputs=[console, path_current_file]
|
| 945 |
+
)
|
| 946 |
+
cluster_file_upload.upload(
|
| 947 |
+
fn=process_cluster_upload,
|
| 948 |
+
inputs=[cluster_file_upload],
|
| 949 |
+
outputs=[console, cluster_current_file]
|
| 950 |
+
)
|
| 951 |
+
gadm_shp_upload.upload(
|
| 952 |
+
fn=process_shp_upload,
|
| 953 |
+
inputs=[gadm_shp_upload],
|
| 954 |
+
outputs=[console, gadm_shp_current_file]
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
generate_btn.click(
|
| 958 |
+
fn=update_map,
|
| 959 |
+
inputs=[
|
| 960 |
+
map_location, map_type, path_type, path_num_samples, path_company_search,
|
| 961 |
+
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
|
| 962 |
+
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
|
| 963 |
+
brightness_slider
|
| 964 |
+
],
|
| 965 |
+
outputs=[console, map_html]
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
# Auto-update radio buttons
|
| 969 |
+
for control in [map_location, map_type, path_type, brightness_slider]:
|
| 970 |
+
control.change(
|
| 971 |
+
fn=update_map,
|
| 972 |
+
inputs=[
|
| 973 |
+
map_location, map_type, path_type, path_num_samples, path_company_search,
|
| 974 |
+
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
|
| 975 |
+
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
|
| 976 |
+
brightness_slider
|
| 977 |
+
],
|
| 978 |
+
outputs=[console, map_html]
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
# Launch the app
|
| 982 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
numpy
|
| 3 |
+
folium
|
| 4 |
+
gradio
|
| 5 |
+
geopandas
|
| 6 |
+
shapely
|
| 7 |
+
git-lfs
|