yolo-e-idcard / app.py
tommulder's picture
Enable GPU runtime: switch to PyTorch CUDA base, prefer CUDA device, warm-up pass, and detailed GPU logs; update README; remove CPU torch wheels from requirements
ef82d3b
"""HF YOLO-E Detection Endpoint
This FastAPI application provides a Hugging Face Space endpoint for YOLO-E
document detection with European document classification, ML-based orientation
detection, and video processing capabilities.
"""
import logging
import time
import uuid
import json
import os
from typing import List, Optional, Dict, Any, Tuple
from contextlib import asynccontextmanager
import cv2
import numpy as np
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from enum import Enum
import torch
from ultralytics import YOLOE
from PIL import Image
import io
import base64
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global model instances
yolo_model = None
orientation_classifier = None
class_mapping = {}
# Selected inference device string (e.g., 'cuda:0', 'mps', or 'cpu')
yolo_device: str = "cpu"
# Load class mapping from config
def load_class_mapping():
"""Load class mapping from labels.json configuration."""
global class_mapping
try:
# Try to load from config directory
config_path = os.path.join(os.path.dirname(__file__), "config", "labels.json")
if os.path.exists(config_path):
with open(config_path, 'r') as f:
config = json.load(f)
class_mapping = config.get("classes", {})
else:
# Fallback to default mapping
class_mapping = {
"0": "id_front",
"1": "id_back",
"2": "driver_license",
"3": "passport",
"4": "mrz"
}
logger.info(f"Loaded class mapping: {class_mapping}")
except Exception as e:
logger.warning(f"Failed to load class mapping: {e}")
class_mapping = {
"0": "id_front",
"1": "id_back",
"2": "driver_license",
"3": "passport",
"4": "mrz"
}
# Document type mapping for European documents
DOCUMENT_TYPE_MAPPING = {
"id_front": "identity_card",
"id_back": "identity_card",
"driver_license": "driver_license",
"passport": "passport",
"mrz": "identity_card" # MRZ typically indicates ID card back
}
class DocumentType(str, Enum):
"""Detected document types for European documents."""
IDENTITY_CARD = "identity_card"
PASSPORT = "passport"
DRIVER_LICENSE = "driver_license"
RESIDENCE_PERMIT = "residence_permit"
UNKNOWN = "unknown"
class Orientation(str, Enum):
"""Document orientation classification."""
FRONT = "front"
BACK = "back"
UNKNOWN = "unknown"
class BoundingBox(BaseModel):
"""Normalized bounding box coordinates."""
x1: float = Field(..., ge=0.0, le=1.0, description="Top-left x coordinate")
y1: float = Field(..., ge=0.0, le=1.0, description="Top-left y coordinate")
x2: float = Field(..., ge=0.0, le=1.0, description="Bottom-right x coordinate")
y2: float = Field(..., ge=0.0, le=1.0, description="Bottom-right y coordinate")
class QualityMetrics(BaseModel):
"""Quality assessment metrics."""
sharpness: float = Field(..., ge=0.0, le=1.0, description="Image sharpness score")
glare_score: float = Field(..., ge=0.0, le=1.0, description="Glare detection score")
coverage: float = Field(..., ge=0.0, le=1.0, description="Document coverage percentage")
brightness: Optional[float] = Field(None, ge=0.0, le=1.0, description="Overall brightness")
contrast: Optional[float] = Field(None, ge=0.0, le=1.0, description="Image contrast")
class TrackingInfo(BaseModel):
"""Tracking information for video processing."""
track_id: Optional[str] = Field(None, description="Unique track identifier")
tracking_confidence: Optional[float] = Field(None, description="Tracking confidence")
track_age: Optional[int] = Field(None, description="Track age in frames")
is_tracked: bool = Field(False, description="Whether object is being tracked")
tracker_type: Optional[str] = Field(None, description="Tracker type used")
class DetectionMetadata(BaseModel):
"""Additional detection metadata."""
class_name: str = Field(..., description="Detected class name")
original_coordinates: List[float] = Field(..., description="Original pixel coordinates")
mask_used: bool = Field(False, description="Whether segmentation mask was used")
class DocumentDetection(BaseModel):
"""Single document detection result."""
document_type: DocumentType = Field(..., description="Type of detected document")
orientation: Orientation = Field(..., description="Document orientation (front/back)")
confidence: float = Field(..., ge=0.0, le=1.0, description="Detection confidence")
bounding_box: BoundingBox = Field(..., description="Normalized bounding box")
quality: QualityMetrics = Field(..., description="Quality assessment metrics")
tracking: TrackingInfo = Field(..., description="Tracking information")
crop_data: Optional[str] = Field(None, description="Base64 encoded crop data")
metadata: DetectionMetadata = Field(..., description="Additional metadata")
class DetectionResponse(BaseModel):
"""Detection API response."""
request_id: str = Field(..., description="Unique request identifier")
media_type: str = Field(..., description="Media type processed")
processing_time: float = Field(..., description="Processing time in seconds")
detections: List[DocumentDetection] = Field(..., description="List of detections")
frame_count: Optional[int] = Field(None, description="Number of frames processed (video only)")
class QualityAssessor:
"""Enhanced quality assessment for document images."""
@staticmethod
def calculate_sharpness(image: np.ndarray) -> float:
"""Calculate image sharpness using Laplacian variance."""
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
# Normalize to 0-1 range (empirically determined)
return min(laplacian_var / 1000.0, 1.0)
except Exception:
return 0.5
@staticmethod
def calculate_glare_score(image: np.ndarray) -> float:
"""Calculate glare score using brightness thresholding."""
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# Find bright pixels (above 90th percentile)
threshold_value = np.percentile(blurred, 90)
bright_pixels = blurred > threshold_value
# Calculate percentage of bright pixels
bright_ratio = np.sum(bright_pixels) / bright_pixels.size
return min(bright_ratio, 1.0)
except Exception:
return 0.5
@staticmethod
def calculate_coverage(image: np.ndarray, bbox: BoundingBox) -> float:
"""Calculate document coverage within bounding box."""
try:
h, w = image.shape[:2]
x1 = int(bbox.x1 * w)
y1 = int(bbox.y1 * h)
x2 = int(bbox.x2 * w)
y2 = int(bbox.y2 * h)
# Calculate area ratio
bbox_area = (x2 - x1) * (y2 - y1)
total_area = w * h
return min(bbox_area / total_area, 1.0)
except Exception:
return 0.5
@staticmethod
def calculate_brightness(image: np.ndarray) -> float:
"""Calculate overall image brightness."""
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mean_brightness = np.mean(gray) / 255.0
return float(mean_brightness)
except Exception:
return 0.5
@staticmethod
def calculate_contrast(image: np.ndarray) -> float:
"""Calculate image contrast using standard deviation."""
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
std_dev = np.std(gray)
# Normalize to 0-1 scale (typical std dev range: 0-128)
contrast = min(std_dev / 64.0, 1.0)
return float(contrast)
except Exception:
return 0.5
@staticmethod
def assess_quality(image: np.ndarray, bbox: BoundingBox) -> QualityMetrics:
"""Assess all quality metrics for a document image."""
return QualityMetrics(
sharpness=QualityAssessor.calculate_sharpness(image),
glare_score=QualityAssessor.calculate_glare_score(image),
coverage=QualityAssessor.calculate_coverage(image, bbox),
brightness=QualityAssessor.calculate_brightness(image),
contrast=QualityAssessor.calculate_contrast(image)
)
class OrientationClassifier:
"""ML-based orientation classification for European documents."""
def __init__(self, yolo_model: Optional[YOLOE] = None):
"""Initialize the orientation classifier."""
self.yolo_model = yolo_model
def classify_orientation(self, image: np.ndarray, class_name: str) -> Orientation:
"""Classify document orientation using multiple methods.
Args:
image: Document image as numpy array
class_name: Detected class name from YOLO-E
Returns:
Document orientation classification
"""
try:
# Method 1: Class-based classification (most reliable)
class_orientation = self._classify_by_class(class_name)
if class_orientation != Orientation.UNKNOWN:
return class_orientation
# Method 2: Portrait-based classification
if self.yolo_model is not None:
portrait_orientation = self._classify_by_portrait(image)
if portrait_orientation != Orientation.UNKNOWN:
return portrait_orientation
# Method 3: Heuristic-based classification
heuristic_orientation = self._classify_by_heuristics(image)
return heuristic_orientation
except Exception as e:
logger.warning(f"Orientation classification failed: {e}")
return Orientation.UNKNOWN
def _classify_by_class(self, class_name: str) -> Orientation:
"""Classify orientation based on detected class."""
if class_name in ["id_front", "passport"]:
return Orientation.FRONT
elif class_name in ["id_back", "mrz"]:
return Orientation.BACK
elif class_name == "driver_license":
# Driver licenses can be front or back, need additional analysis
return Orientation.UNKNOWN
else:
return Orientation.UNKNOWN
def _classify_by_portrait(self, image: np.ndarray) -> Orientation:
"""Classify orientation based on portrait/face detection."""
if self.yolo_model is None:
return Orientation.UNKNOWN
try:
# Detect faces/portraits using YOLO-E
results = self.yolo_model(image, verbose=False)
if not results or len(results) == 0:
return Orientation.UNKNOWN
# Process detection results for faces
face_detections = []
for result in results:
if hasattr(result, 'boxes') and result.boxes is not None:
boxes = result.boxes
for conf, xyxy in zip(boxes.conf, boxes.xyxy):
if conf >= 0.5: # Confidence threshold for face detection
face_detections.append(float(conf))
if face_detections:
# Strong face detection suggests front of document
max_confidence = max(face_detections)
if max_confidence > 0.7:
return Orientation.FRONT
elif max_confidence > 0.5:
return Orientation.FRONT
return Orientation.UNKNOWN
except Exception as e:
logger.warning(f"Portrait-based classification failed: {e}")
return Orientation.UNKNOWN
def _classify_by_heuristics(self, image: np.ndarray) -> Orientation:
"""Classify orientation using image analysis heuristics."""
try:
# Convert to grayscale
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
height, width = gray.shape
# Heuristic 1: Text density analysis
text_density = self._analyze_text_density(gray)
# Heuristic 2: Symmetry analysis
symmetry_score = self._analyze_symmetry(gray)
# Heuristic 3: Edge analysis
edge_score = self._analyze_edges(gray)
# Combine heuristics with weights
combined_score = (
text_density * 0.4 +
symmetry_score * 0.3 +
edge_score * 0.3
)
# Threshold-based classification
if combined_score > 0.6:
return Orientation.BACK
elif combined_score < 0.4:
return Orientation.FRONT
else:
return Orientation.UNKNOWN
except Exception as e:
logger.warning(f"Heuristic classification failed: {e}")
return Orientation.UNKNOWN
def _analyze_text_density(self, gray_image: np.ndarray) -> float:
"""Analyze text density in the image."""
try:
# Apply adaptive thresholding to find text regions
thresh = cv2.adaptiveThreshold(
gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2
)
# Remove small noise
kernel = np.ones((3, 3), np.uint8)
cleaned = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# Calculate text density
text_pixels = np.sum(cleaned > 0)
total_pixels = cleaned.size
density = text_pixels / total_pixels
# Normalize to 0-1 range
normalized_density = min(density * 5.0, 1.0)
return float(normalized_density)
except Exception:
return 0.5
def _analyze_symmetry(self, gray_image: np.ndarray) -> float:
"""Analyze image symmetry."""
try:
height, width = gray_image.shape
# Split image into left and right halves
mid = width // 2
left_half = gray_image[:, :mid]
right_half = cv2.flip(gray_image[:, -mid:], 1)
# Ensure same size for comparison
min_width = min(left_half.shape[1], right_half.shape[1])
left_half = left_half[:, :min_width]
right_half = right_half[:, :min_width]
# Calculate correlation coefficient
correlation = np.corrcoef(left_half.flatten(), right_half.flatten())[0, 1]
# Convert to symmetry score
symmetry = (correlation + 1.0) / 2.0
return float(symmetry)
except Exception:
return 0.5
def _analyze_edges(self, gray_image: np.ndarray) -> float:
"""Analyze edge patterns for orientation clues."""
try:
# Detect edges
edges = cv2.Canny(gray_image, 50, 150)
# Divide image into regions
height, width = edges.shape
regions = {
'top_left': edges[:height//2, :width//2],
'top_right': edges[:height//2, width//2:],
'bottom_left': edges[height//2:, :width//2],
'bottom_right': edges[height//2:, width//2:],
'center': edges[height//3:2*height//3, width//3:2*width//3]
}
# Calculate edge density in each region
edge_densities = {}
for region_name, region in regions.items():
edge_densities[region_name] = np.sum(region > 0) / region.size
# Front documents often have more edges in center (portrait)
# Back documents often have more edges in corners (text, MRZ)
center_density = edge_densities['center']
corner_density = (
edge_densities['top_left'] +
edge_densities['top_right'] +
edge_densities['bottom_left'] +
edge_densities['bottom_right']
) / 4.0
# Higher corner density suggests back document
if corner_density > center_density:
return min(corner_density / center_density * 0.5, 1.0)
else:
return max(0.0, 1.0 - (center_density / max(corner_density, 0.01)) * 0.5)
except Exception:
return 0.5
class VideoProcessor:
"""Video processing utilities for frame extraction and quality-based selection."""
def __init__(self, sample_fps: float = 2.0):
"""Initialize video processor.
Args:
sample_fps: Frames per second to sample from video
"""
self.sample_fps = sample_fps
def extract_frames(self, video_path: str) -> List[Tuple[np.ndarray, float]]:
"""Extract frames from video at specified sampling rate.
Args:
video_path: Path to video file
Returns:
List of (frame, timestamp) tuples
"""
frames = []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_interval = max(1, int(fps / self.sample_fps))
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
timestamp = frame_count / fps
frames.append((frame.copy(), timestamp))
frame_count += 1
cap.release()
logger.info(f"Extracted {len(frames)} frames from video")
return frames
def extract_frames_from_bytes(self, video_data: bytes) -> List[Tuple[np.ndarray, float]]:
"""Extract frames from video bytes.
Args:
video_data: Video file as bytes
Returns:
List of (frame, timestamp) tuples
"""
# Write video data to temporary file
import tempfile
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
tmp_file.write(video_data)
tmp_path = tmp_file.name
try:
frames = self.extract_frames(tmp_path)
logger.info(f"Extracted {len(frames)} frames from video bytes")
except Exception as e:
logger.error(f"Failed to extract frames from video: {e}")
frames = []
finally:
# Clean up temporary file
try:
os.unlink(tmp_path)
except OSError:
pass
return frames
class SimpleTracker:
"""Simple tracking system for video processing."""
def __init__(self):
"""Initialize the tracker."""
self.track_counter = 0
self.active_tracks = {} # track_id -> track_info
self.track_threshold = 0.3 # IoU threshold for track association
def update_tracks(self, detections: List[DocumentDetection], frame_idx: int) -> List[DocumentDetection]:
"""Update tracks for current frame detections.
Args:
detections: List of detections in current frame
frame_idx: Current frame index
Returns:
List of detections with updated tracking info
"""
if not detections:
return detections
# Simple tracking: assign track IDs based on position similarity
for detection in detections:
track_id = self._assign_track_id(detection, frame_idx)
detection.tracking = TrackingInfo(
track_id=track_id,
tracking_confidence=0.8, # Default confidence
track_age=frame_idx - self.active_tracks.get(track_id, {}).get('first_seen', frame_idx),
is_tracked=True,
tracker_type="simple_position_based"
)
return detections
def _assign_track_id(self, detection: DocumentDetection, frame_idx: int) -> str:
"""Assign a track ID to a detection based on position similarity."""
bbox = detection.bounding_box
# Check for existing tracks with similar position
for track_id, track_info in self.active_tracks.items():
if self._calculate_iou(bbox, track_info['last_bbox']) > self.track_threshold:
# Update existing track
track_info['last_bbox'] = bbox
track_info['last_seen'] = frame_idx
return track_id
# Create new track
self.track_counter += 1
track_id = f"track_{self.track_counter:03d}"
self.active_tracks[track_id] = {
'first_seen': frame_idx,
'last_seen': frame_idx,
'last_bbox': bbox
}
return track_id
def _calculate_iou(self, bbox1: BoundingBox, bbox2: BoundingBox) -> float:
"""Calculate Intersection over Union (IoU) between two bounding boxes."""
# Calculate intersection
x1 = max(bbox1.x1, bbox2.x1)
y1 = max(bbox1.y1, bbox2.y1)
x2 = min(bbox1.x2, bbox2.x2)
y2 = min(bbox1.y2, bbox2.y2)
if x2 <= x1 or y2 <= y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
# Calculate union
area1 = (bbox1.x2 - bbox1.x1) * (bbox1.y2 - bbox1.y1)
area2 = (bbox2.x2 - bbox2.x1) * (bbox2.y2 - bbox2.y1)
union = area1 + area2 - intersection
return intersection / union if union > 0 else 0.0
class QualitySelector:
"""Quality-based frame selection for video processing."""
def __init__(self, quality_threshold: float = 0.7):
"""Initialize quality selector.
Args:
quality_threshold: Minimum quality score threshold
"""
self.quality_threshold = quality_threshold
def select_best_detections(
self,
detections_by_frame: List[List[DocumentDetection]]
) -> List[DocumentDetection]:
"""Select the highest quality detection for each unique document.
Args:
detections_by_frame: List of detection lists, one per frame
Returns:
List of best quality detections
"""
if not detections_by_frame:
return []
# Group detections by unique document identifier
unique_detections = self._group_detections_by_document(detections_by_frame)
# Select best quality detection for each group
best_detections = []
for doc_id, detection_group in unique_detections.items():
best_detection = self._select_best_detection(detection_group)
if best_detection:
best_detections.append(best_detection)
logger.debug(f"Selected best detection for {doc_id}")
logger.info(f"Selected {len(best_detections)} best quality detections")
return best_detections
def _group_detections_by_document(
self,
detections_by_frame: List[List[DocumentDetection]]
) -> Dict[str, List[DocumentDetection]]:
"""Group detections by unique document identifier."""
document_groups = {}
for frame_idx, frame_detections in enumerate(detections_by_frame):
for detection in frame_detections:
# Create unique document identifier based on type and position
doc_id = self._create_document_id(detection)
if doc_id not in document_groups:
document_groups[doc_id] = []
document_groups[doc_id].append(detection)
return document_groups
def _create_document_id(self, detection: DocumentDetection) -> str:
"""Create a unique identifier for a document detection."""
# Use document type and position for grouping
bbox = detection.bounding_box
position_hash = f"{bbox.x1:.3f}_{bbox.y1:.3f}_{bbox.x2:.3f}_{bbox.y2:.3f}"
return f"{detection.document_type.value}_{position_hash}"
def _select_best_detection(self, detection_group: List[DocumentDetection]) -> Optional[DocumentDetection]:
"""Select the best quality detection from a group."""
if not detection_group:
return None
# Calculate composite quality score for each detection and sort
detection_scores = []
for detection in detection_group:
quality_score = self._calculate_composite_quality_score(detection)
detection_scores.append((detection, quality_score))
# Sort by quality score (descending)
detection_scores.sort(key=lambda x: x[1], reverse=True)
return detection_scores[0][0]
def _calculate_composite_quality_score(self, detection: DocumentDetection) -> float:
"""Calculate composite quality score for a detection."""
quality = detection.quality
# Weighted combination of quality metrics
weights = {
'sharpness': 0.3,
'glare_score': 0.2, # Inverted - lower glare is better
'coverage': 0.2,
'brightness': 0.15,
'contrast': 0.15
}
score = 0.0
total_weight = 0.0
for metric, weight in weights.items():
if hasattr(quality, metric):
value = getattr(quality, metric)
if value is not None:
# Invert glare score (lower is better)
if metric == 'glare_score':
value = 1.0 - value
score += value * weight
total_weight += weight
if total_weight > 0:
return score / total_weight
return 0.5 # Default if no metrics available
def normalize_bbox(bbox: List[float], img_width: int, img_height: int) -> BoundingBox:
"""Normalize bounding box coordinates to [0,1] range."""
x1, y1, x2, y2 = bbox
return BoundingBox(
x1=x1 / img_width,
y1=y1 / img_height,
x2=x2 / img_width,
y2=y2 / img_height
)
def classify_document_type(class_id: int) -> DocumentType:
"""Classify document type based on detected class ID."""
global class_mapping, DOCUMENT_TYPE_MAPPING
# Get class name from mapping
class_name = class_mapping.get(str(class_id), "unknown")
# Map to document type
doc_type = DOCUMENT_TYPE_MAPPING.get(class_name, "unknown")
try:
return DocumentType(doc_type)
except ValueError:
return DocumentType.UNKNOWN
def get_class_name(class_id: int) -> str:
"""Get class name from class ID."""
global class_mapping
return class_mapping.get(str(class_id), "unknown")
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager for model loading."""
global yolo_model, orientation_classifier, yolo_device
logger.info("Loading YOLO-E model and initializing components...")
try:
# Load class mapping
load_class_mapping()
# Select device (prefer CUDA on HF GPU instances; otherwise CPU)
# Why: deployment targets Linux GPU; macOS MPS is not relevant here.
yolo_device = "cuda:0" if torch.cuda.is_available() else "cpu"
logger.info(f"Selected device: {yolo_device} (cuda_available={torch.cuda.is_available()})")
# Log detailed device/runtime information for observability
try:
if yolo_device.startswith("cuda"):
# Query active CUDA device details to confirm GPU runtime
device_index = torch.cuda.current_device()
device_name = torch.cuda.get_device_name(device_index)
cc_major, cc_minor = torch.cuda.get_device_capability(device_index)
logger.info(
"CUDA device info: name=%s index=%s capability=%s.%s torch=%s cuda_runtime=%s",
device_name,
device_index,
cc_major,
cc_minor,
torch.__version__,
getattr(torch.version, "cuda", "unknown"),
)
else:
logger.info("CPU runtime active: torch=%s", torch.__version__)
except Exception as device_log_err:
# Avoid startup failure if device metadata is unavailable
logger.warning(f"Device info logging failed: {device_log_err}")
# Load YOLO-E model (yolo11 variant)
yolo_model = YOLOE("yolo11n.pt") # Use nano for faster inference
# Move model to device when API is available. Fallback to underlying .model.
try:
# Preferred: Ultralytics model interface
_ = yolo_model.to(yolo_device)
except Exception:
try:
# Fallback: underlying PyTorch module
_ = yolo_model.model.to(yolo_device) # type: ignore[attr-defined]
except Exception:
# If neither works, we'll rely on per-call device selection below
logger.warning("Could not move model to device at load time; will set device per call")
logger.info("YOLO-E model loaded successfully")
# Initialize orientation classifier with YOLO model
orientation_classifier = OrientationClassifier(yolo_model)
logger.info("Orientation classifier initialized")
# Optional warm-up on GPU to trigger lazy CUDA init and JITs
try:
dummy = np.zeros((640, 640, 3), dtype=np.uint8)
# Use a very low confidence and no verbose to minimize overhead
_ = yolo_model(dummy, conf=0.01, verbose=False, device=yolo_device)
if yolo_device.startswith("cuda"):
torch.cuda.synchronize()
logger.info("Warm-up inference completed")
except Exception as warmup_err:
logger.warning(f"Warm-up skipped due to: {warmup_err}")
except Exception as e:
logger.error(f"Failed to load models: {e}")
raise
yield
logger.info("Shutting down YOLO-E endpoint...")
app = FastAPI(
title="KYB YOLO-E European Document Detection",
description="Enhanced YOLO-E for European identity document detection with ML-based orientation classification and video processing",
version="2.0.0",
lifespan=lifespan
)
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "version": "2.0.0"}
@app.post("/v1/id/detect", response_model=DetectionResponse)
async def detect_documents(
file: UploadFile = File(..., description="Image file to process"),
min_confidence: float = Form(0.25, ge=0.0, le=1.0, description="Minimum confidence threshold"),
return_crops: bool = Form(False, description="Whether to return cropped images")
):
"""Detect European identity documents in uploaded image."""
if yolo_model is None or orientation_classifier is None:
raise HTTPException(status_code=503, detail="Models not loaded")
start_time = time.time()
request_id = str(uuid.uuid4())
try:
# Read and validate image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data))
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
img_height, img_width = image_cv.shape[:2]
# Run YOLO-E detection on the selected device
results = yolo_model(image_cv, conf=min_confidence, device=yolo_device, verbose=False)
detections = []
for result in results:
if result.boxes is not None:
for box in result.boxes:
# Extract detection data
conf = float(box.conf[0])
if conf < min_confidence:
continue
# Get class ID and name
class_id = int(box.cls[0])
class_name = get_class_name(class_id)
# Get bounding box coordinates
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
bbox = normalize_bbox([x1, y1, x2, y2], img_width, img_height)
# Classify document type
document_type = classify_document_type(class_id)
# Determine orientation using ML-based classifier
orientation = orientation_classifier.classify_orientation(image_cv, class_name)
# Assess quality
quality = QualityAssessor.assess_quality(image_cv, bbox)
# Prepare crop data if requested
crop_data = None
if return_crops:
crop_img = image_cv[int(y1):int(y2), int(x1):int(x2)]
_, buffer = cv2.imencode('.jpg', crop_img)
crop_data = base64.b64encode(buffer).decode('utf-8')
# Create detection
detection = DocumentDetection(
document_type=document_type,
orientation=orientation,
confidence=conf,
bounding_box=bbox,
quality=quality,
tracking=TrackingInfo(
track_id=None,
tracking_confidence=None,
track_age=None,
is_tracked=False,
tracker_type=None
),
crop_data=crop_data,
metadata=DetectionMetadata(
class_name=class_name,
original_coordinates=[float(x1), float(y1), float(x2), float(y2)],
mask_used=False
)
)
detections.append(detection)
processing_time = time.time() - start_time
return DetectionResponse(
request_id=request_id,
media_type="image",
processing_time=processing_time,
detections=detections,
frame_count=None
)
except Exception as e:
logger.error(f"Detection failed: {e}")
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
@app.post("/v1/id/detect-video", response_model=DetectionResponse)
async def detect_documents_video(
file: UploadFile = File(..., description="Video file to process"),
min_confidence: float = Form(0.25, ge=0.0, le=1.0, description="Minimum confidence threshold"),
sample_fps: float = Form(2.0, ge=0.1, le=30.0, description="Video sampling rate in frames per second"),
return_crops: bool = Form(False, description="Whether to return cropped images"),
max_detections: int = Form(10, ge=1, le=100, description="Maximum number of detections to return")
):
"""Detect European identity documents in uploaded video with quality-based frame selection."""
if yolo_model is None or orientation_classifier is None:
raise HTTPException(status_code=503, detail="Models not loaded")
start_time = time.time()
request_id = str(uuid.uuid4())
try:
# Read video data
video_data = await file.read()
# Initialize video processor, quality selector, and tracker
video_processor = VideoProcessor(sample_fps=sample_fps)
quality_selector = QualitySelector()
tracker = SimpleTracker()
# Extract frames from video
frames = video_processor.extract_frames_from_bytes(video_data)
if not frames:
logger.error("No frames extracted from video")
raise HTTPException(status_code=400, detail="No frames extracted from video")
logger.info(f"Processing {len(frames)} frames from video")
# Process each frame
detections_by_frame = []
for frame_idx, (frame, timestamp) in enumerate(frames):
frame_detections = []
# Run YOLO-E detection on the selected device
results = yolo_model(frame, conf=min_confidence, device=yolo_device, verbose=False)
for result in results:
if result.boxes is not None:
for box in result.boxes:
# Extract detection data
conf = float(box.conf[0])
if conf < min_confidence:
continue
# Get class ID and name
class_id = int(box.cls[0])
class_name = get_class_name(class_id)
# Get bounding box coordinates
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
img_height, img_width = frame.shape[:2]
bbox = normalize_bbox([x1, y1, x2, y2], img_width, img_height)
# Classify document type
document_type = classify_document_type(class_id)
# Determine orientation using ML-based classifier
orientation = orientation_classifier.classify_orientation(frame, class_name)
# Assess quality
quality = QualityAssessor.assess_quality(frame, bbox)
# Prepare crop data if requested
crop_data = None
if return_crops:
crop_img = frame[int(y1):int(y2), int(x1):int(x2)]
_, buffer = cv2.imencode('.jpg', crop_img)
crop_data = base64.b64encode(buffer).decode('utf-8')
# Create detection
detection = DocumentDetection(
document_type=document_type,
orientation=orientation,
confidence=conf,
bounding_box=bbox,
quality=quality,
tracking=TrackingInfo(), # Will be updated by tracker
crop_data=crop_data,
metadata=DetectionMetadata(
class_name=class_name,
original_coordinates=[float(x1), float(y1), float(x2), float(y2)],
mask_used=False
)
)
frame_detections.append(detection)
# Update tracks for this frame
frame_detections = tracker.update_tracks(frame_detections, frame_idx)
detections_by_frame.append(frame_detections)
# Select best quality detections
best_detections = quality_selector.select_best_detections(detections_by_frame)
# Limit to max_detections
if len(best_detections) > max_detections:
best_detections = best_detections[:max_detections]
processing_time = time.time() - start_time
return DetectionResponse(
request_id=request_id,
media_type="video",
processing_time=processing_time,
detections=best_detections,
frame_count=len(frames)
)
except Exception as e:
logger.error(f"Video detection failed: {e}")
raise HTTPException(status_code=500, detail=f"Video detection failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)