Spaces:
Running
Running
| from datasets import load_dataset, Dataset | |
| import os | |
| from datasets import load_dataset | |
| from datasets.utils.logging import disable_progress_bar | |
| from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES | |
| from utils_display import make_clickable_model | |
| import random | |
| disable_progress_bar() | |
| import math | |
| import json | |
| from tqdm import tqdm | |
| import numpy as np | |
| id_to_data = None | |
| model_len_info = None | |
| bench_data = None | |
| eval_results = None | |
| score_eval_results = None | |
| # Formats the columns | |
| def formatter(x): | |
| if type(x) is str: | |
| x = x | |
| else: | |
| x = round(x, 1) | |
| return x | |
| def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True): | |
| for col in df.columns: | |
| if col == "Model" and click_url: | |
| df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
| else: | |
| df[col] = df[col].apply(formatter) # For numerical values | |
| df.rename(columns=column_names, inplace=True) | |
| list_columns = [col for col in ordered_columns if col in df.columns] | |
| df = df[list_columns] | |
| if rank_column in df.columns: | |
| df.sort_values(by=rank_column, inplace=True, ascending=False) | |
| return df | |