Commit
·
4a1518a
1
Parent(s):
fe666e1
add colors
Browse files
app.py
CHANGED
|
@@ -193,7 +193,36 @@ def random_sample(r: gr.Request, subset):
|
|
| 193 |
|
| 194 |
subsets = eval_set.unique("subset")
|
| 195 |
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
"""
|
| 198 |
Takes a model name as a regex, then returns only the rows that has that in it.
|
| 199 |
"""
|
|
@@ -228,6 +257,8 @@ def regex_table(dataframe, regex, filter_button):
|
|
| 228 |
# sort array by Score column
|
| 229 |
data = data.sort_values(by='Score', ascending=False)
|
| 230 |
|
|
|
|
|
|
|
| 231 |
# replace column '' with count/rank
|
| 232 |
data[''] = np.arange(1, 1 + len(data))
|
| 233 |
|
|
@@ -242,11 +273,15 @@ def regex_table(dataframe, regex, filter_button):
|
|
| 242 |
# replace any data[col].values == '' with np.NaN
|
| 243 |
data[col] = data[col].replace('', np.NaN)
|
| 244 |
data[col] = np.round(np.array(data[col].values).astype(float), 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
return data
|
| 246 |
|
| 247 |
# import ipdb; ipdb.set_trace()
|
| 248 |
|
| 249 |
-
total_models = len(regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"]).values)
|
| 250 |
|
| 251 |
with gr.Blocks(css=custom_css) as app:
|
| 252 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
|
@@ -281,7 +316,7 @@ with gr.Blocks(css=custom_css) as app:
|
|
| 281 |
visible=False,
|
| 282 |
)
|
| 283 |
rewardbench_table = gr.Dataframe(
|
| 284 |
-
regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative", "Prior Sets"])
|
| 285 |
datatype=col_types_rewardbench_avg,
|
| 286 |
headers=rewardbench_data_avg.columns.tolist(),
|
| 287 |
elem_id="rewardbench_dataframe_avg",
|
|
@@ -306,7 +341,7 @@ with gr.Blocks(css=custom_css) as app:
|
|
| 306 |
visible=False,
|
| 307 |
)
|
| 308 |
rewardbench_table_detailed = gr.Dataframe(
|
| 309 |
-
regex_table(rewardbench_data.copy(), "", ["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"])
|
| 310 |
datatype=col_types_rewardbench,
|
| 311 |
headers=rewardbench_data.columns.tolist(),
|
| 312 |
elem_id="rewardbench_dataframe",
|
|
@@ -351,7 +386,7 @@ with gr.Blocks(css=custom_css) as app:
|
|
| 351 |
visible=False,
|
| 352 |
)
|
| 353 |
pref_sets_table = gr.Dataframe(
|
| 354 |
-
regex_table(prefs_data.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"])
|
| 355 |
datatype=col_types_prefs,
|
| 356 |
headers=prefs_data.columns.tolist(),
|
| 357 |
elem_id="prefs_dataframe",
|
|
|
|
| 193 |
|
| 194 |
subsets = eval_set.unique("subset")
|
| 195 |
|
| 196 |
+
color_map = {
|
| 197 |
+
"Generative": "#7497db",
|
| 198 |
+
"Custom Classifier": "#E8ECF2",
|
| 199 |
+
"Seq. Classifier": "#ffcd75",
|
| 200 |
+
"DPO": "#75809c",
|
| 201 |
+
}
|
| 202 |
+
def color_model_type_column(df, color_map):
|
| 203 |
+
"""
|
| 204 |
+
Apply color to the 'Model Type' column of the DataFrame based on a given color mapping.
|
| 205 |
+
|
| 206 |
+
Parameters:
|
| 207 |
+
df (pd.DataFrame): The DataFrame containing the 'Model Type' column.
|
| 208 |
+
color_map (dict): A dictionary mapping model types to colors.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
pd.Styler: The styled DataFrame.
|
| 212 |
+
"""
|
| 213 |
+
# Function to apply color based on the model type
|
| 214 |
+
def apply_color(val):
|
| 215 |
+
color = color_map.get(val, "default") # Default color if not specified in color_map
|
| 216 |
+
return f'background-color: {color}'
|
| 217 |
+
|
| 218 |
+
# Format for different columns
|
| 219 |
+
format_dict = {col: "{:.1f}" for col in df.columns if col not in ['Average', 'Model', 'Model Type']}
|
| 220 |
+
format_dict['Average'] = "{:.2f}"
|
| 221 |
+
format_dict[''] = "{:d}"
|
| 222 |
+
|
| 223 |
+
return df.style.applymap(apply_color, subset=['Model Type']).format(format_dict, na_rep='')
|
| 224 |
+
|
| 225 |
+
def regex_table(dataframe, regex, filter_button, style=True):
|
| 226 |
"""
|
| 227 |
Takes a model name as a regex, then returns only the rows that has that in it.
|
| 228 |
"""
|
|
|
|
| 257 |
# sort array by Score column
|
| 258 |
data = data.sort_values(by='Score', ascending=False)
|
| 259 |
|
| 260 |
+
data.reset_index(drop=True, inplace=True)
|
| 261 |
+
|
| 262 |
# replace column '' with count/rank
|
| 263 |
data[''] = np.arange(1, 1 + len(data))
|
| 264 |
|
|
|
|
| 273 |
# replace any data[col].values == '' with np.NaN
|
| 274 |
data[col] = data[col].replace('', np.NaN)
|
| 275 |
data[col] = np.round(np.array(data[col].values).astype(float), 1)
|
| 276 |
+
if style:
|
| 277 |
+
# apply color
|
| 278 |
+
data = color_model_type_column(data, color_map)
|
| 279 |
+
|
| 280 |
return data
|
| 281 |
|
| 282 |
# import ipdb; ipdb.set_trace()
|
| 283 |
|
| 284 |
+
total_models = len(regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"], style=False).values)
|
| 285 |
|
| 286 |
with gr.Blocks(css=custom_css) as app:
|
| 287 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
|
|
|
| 316 |
visible=False,
|
| 317 |
)
|
| 318 |
rewardbench_table = gr.Dataframe(
|
| 319 |
+
regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative", "Prior Sets"]),
|
| 320 |
datatype=col_types_rewardbench_avg,
|
| 321 |
headers=rewardbench_data_avg.columns.tolist(),
|
| 322 |
elem_id="rewardbench_dataframe_avg",
|
|
|
|
| 341 |
visible=False,
|
| 342 |
)
|
| 343 |
rewardbench_table_detailed = gr.Dataframe(
|
| 344 |
+
regex_table(rewardbench_data.copy(), "", ["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"]),
|
| 345 |
datatype=col_types_rewardbench,
|
| 346 |
headers=rewardbench_data.columns.tolist(),
|
| 347 |
elem_id="rewardbench_dataframe",
|
|
|
|
| 386 |
visible=False,
|
| 387 |
)
|
| 388 |
pref_sets_table = gr.Dataframe(
|
| 389 |
+
regex_table(prefs_data.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"]),
|
| 390 |
datatype=col_types_prefs,
|
| 391 |
headers=prefs_data.columns.tolist(),
|
| 392 |
elem_id="prefs_dataframe",
|