Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from detection_pipeline import DetectionModel | |
| if gr.NO_RELOAD: | |
| model = DetectionModel() | |
| preds = [] | |
| def predict(image, threshold): | |
| global preds | |
| preds = model(image) | |
| return filter_preds(image, threshold) | |
| def filter_preds(image, threshold): | |
| preds_ = list(filter(lambda x: x[4] > threshold/100, preds)) | |
| output = model.visualize(image, preds_) | |
| return output | |
| with gr.Blocks() as interface: | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Input", value="sample/1.jpg") | |
| with gr.Column(): | |
| output = gr.Image(label="Output") | |
| with gr.Row(): | |
| with gr.Column(): | |
| threshold = gr.Slider(0, 100, 30, step=5, label="Threshold") | |
| threshold.release(filter_preds, inputs=[image, threshold], outputs=output) | |
| with gr.Column(): | |
| button = gr.Button(value="Detect") | |
| button.click(predict, [image, threshold], output) | |
| if __name__ == "__main__": | |
| interface.launch() |