Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,473 Bytes
5bce909 3c1f2a9 c6d1d61 3387a76 ed317eb 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 c6d1d61 5bce909 30c0cfe c6d1d61 5bce909 30c0cfe 5bce909 addbeeb 5bce909 30c0cfe c6d1d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# ========== MUST BE FIRST: Gradio SDK entry + ZeroGPU probes ==========
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")
# Optional: 'spaces' present on Spaces; harmless to try locally.
try:
import spaces
except Exception:
class _DummySpaces:
def GPU(self, *_, **__):
def deco(fn): return fn
return deco
spaces = _DummySpaces()
# PUBLIC names so ZeroGPU supervisor can detect them
@spaces.GPU(duration=10)
def gpu_probe(a: int = 1, b: int = 1):
return a + b
@spaces.GPU(duration=10)
def gpu_echo(x: str = "ok"):
return x
# ========== Standard imports ==========
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional, List, Dict, Any
import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download
# ZeroGPU runtime hint (safe on CPU)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
SPACE_ROOT = Path(__file__).parent.resolve()
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
REPO_URL = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
# ========== Lazy resources (no heavy work at import) ==========
_weights_path: Optional[Path] = None
_repo_ready: bool = False
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
"""Download/resolve weights lazily."""
global _weights_path
if _weights_path is None:
if progress: progress(0.10, desc="Downloading model weights (first run)")
wp = hf_hub_download(
repo_id=WEIGHTS_REPO,
filename=WEIGHTS_FILE,
local_dir=str(CACHE_DIR),
local_dir_use_symlinks=False,
force_download=False,
resume_download=True,
)
_weights_path = Path(wp)
return _weights_path
def ensure_repo(progress: Optional[gr.Progress] = None) -> Path:
"""Clone the repo lazily and add to sys.path."""
global _repo_ready
if not _repo_ready:
if not REPO_DIR.exists():
if progress: progress(0.18, desc="Cloning SonicMaster repo (first run)")
subprocess.run(
["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
check=True,
)
if REPO_DIR.as_posix() not in sys.path:
sys.path.append(REPO_DIR.as_posix())
_repo_ready = True
return REPO_DIR
# ========== Helpers ==========
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
# Ensure shape (samples, channels)
if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
wav = wav.T
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
sf.write(path.as_posix(), wav, sr)
def read_audio(path: str) -> Tuple[np.ndarray, int]:
wav, sr = sf.read(path, always_2d=False)
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
return wav, sr
def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
# Try common flag layouts
return [
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
[py, script.as_posix(), "--weights",ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--out", out.as_posix()],
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--output", out.as_posix()],
]
def run_sonicmaster_cli(
input_wav_path: Path,
prompt: str,
out_path: Path,
progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
"""Run inference scripts via subprocess; return (ok, message)."""
if progress: progress(0.14, desc="Preparing inference")
ckpt = get_weights_path(progress=progress)
repo = ensure_repo(progress=progress)
candidates = [repo / "infer_single.py", repo / "inference_fullsong.py", repo / "inference_ptload_batch.py"]
scripts = [s for s in candidates if s.exists()]
if not scripts:
return False, "No inference script found in the repo (expected infer_single.py or similar)."
py = sys.executable or "python3"
env = os.environ.copy()
last_err = ""
for sidx, script in enumerate(scripts, 1):
for cidx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), 1):
try:
if progress:
progress(min(0.20 + 0.08 * (sidx + cidx), 0.70), desc=f"Running {script.name} (try {sidx}.{cidx})")
res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
if out_path.exists() and out_path.stat().st_size > 0:
if progress: progress(0.88, desc="Post-processing output")
return True, (res.stdout or "Inference completed.").strip()
last_err = f"{script.name} produced no output file."
except subprocess.CalledProcessError as e:
snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
last_err = snippet if snippet else f"{script.name} failed with return code {e.returncode}."
except Exception as e:
import traceback
last_err = f"Unexpected error: {e}\n{traceback.format_exc()}"
return False, last_err or "All candidate commands failed."
# ========== GPU path (called only if ZeroGPU/GPU available) ==========
@spaces.GPU(duration=60)
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
try:
import torch # noqa: F401
except Exception:
pass
from pathlib import Path as _P
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)
def _has_cuda() -> bool:
try:
import torch
return torch.cuda.is_available()
except Exception:
return False
# ========== Examples (lazy) ==========
PROMPTS_10 = [
"Increase the clarity of this song by emphasizing treble frequencies.",
"Make this song sound more boomy by amplifying the low end bass frequencies.",
"Can you make this sound louder, please?",
"Make the audio smoother and less distorted.",
"Improve the balance in this song.",
"Disentangle the left and right channels to give this song a stereo feeling.",
"Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
"Raise the level of the vocals, please.",
"Increase the clarity of this song by emphasizing treble frequencies.",
"Please, dereverb this audio.",
]
def list_example_files(progress: Optional[gr.Progress] = None) -> List[str]:
"""Return up to 10 .wav paths inside repo/samples/inputs (lazy clone)."""
repo = ensure_repo(progress=progress)
wav_dir = repo / "samples" / "inputs"
files = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
return [p.as_posix() for p in files[:10]]
def load_examples(_: Any = None, progress=gr.Progress()) -> Dict[str, Any]:
"""Button/auto-load handler: populate dropdown choices and status text."""
paths = list_example_files(progress=progress)
if not paths:
return {
"choices": [],
"status": "No sample .wav files found in repo/samples/inputs.",
}
labels = [f"{i+1:02d} β {Path(p).name}" for i, p in enumerate(paths)]
return {
"choices": labels,
"paths": paths,
"status": f"Loaded {len(paths)} sample audios."
}
def set_example_selection(idx_label: str, paths: List[str]) -> Tuple[str, str]:
"""When user picks an example, set the audio path + a suggested prompt."""
if not idx_label or not paths:
return "", ""
try:
# label "01 β file.wav" -> index 0
idx = int(idx_label.split()[0]) - 1
except Exception:
idx = 0
idx = max(0, min(idx, len(paths)-1))
audio_path = paths[idx]
prompt = PROMPTS_10[idx] if idx < len(PROMPTS_10) else PROMPTS_10[-1]
return audio_path, prompt
# ========== Gradio callback ==========
def enhance_audio_ui(
audio_path: str,
prompt: str,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
"""
Returns (audio, message). On failure, audio=None and message=error text.
"""
try:
if not prompt:
raise gr.Error("Please provide a text prompt.")
if not audio_path:
raise gr.Error("Please upload or select an input audio file.")
wav, sr = read_audio(audio_path)
tmp_in = SPACE_ROOT / "tmp_in.wav"
tmp_out = SPACE_ROOT / "tmp_out.wav"
if tmp_out.exists():
try: tmp_out.unlink()
except Exception: pass
if progress: progress(0.06, desc="Preparing audio")
save_temp_wav(wav, sr, tmp_in)
use_gpu_call = USE_ZEROGPU or _has_cuda()
if progress: progress(0.12, desc="Starting inference")
if use_gpu_call:
ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
else:
ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)
if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
out_wav, out_sr = read_audio(tmp_out.as_posix())
return (out_sr, out_wav), (msg or "Done.")
else:
return None, (msg or "Inference failed without a specific error message.")
except gr.Error as e:
return None, str(e)
except Exception as e:
import traceback
return None, f"Unexpected error: {e}\n{traceback.format_exc()}"
# ========== Gradio UI ==========
with gr.Blocks(title="SonicMaster β Text-Guided Restoration & Mastering", fill_height=True) as _demo:
gr.Markdown(
"## π§ SonicMaster\n"
"Upload audio or **load sample audios**, write a prompt, then click **Enhance**.\n"
"- On failure, the **Status** box shows the exact error "
)
with gr.Row():
with gr.Column(scale=1):
# Sample loader (lazy)
with gr.Accordion("Sample audios (10)", open=False):
load_btn = gr.Button("π₯ Load 10 sample audios")
samples_dropdown = gr.Dropdown(choices=[], label="Pick a sample", interactive=True)
samples_state = gr.State([]) # holds absolute paths
in_audio = gr.Audio(label="Input Audio", type="filepath")
prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten vocals.")
run_btn = gr.Button("π Enhance", variant="primary")
# Optional quick prompt examples (text-only)
gr.Examples(
examples=[[p] for p in [
"Reduce roominess/echo (dereverb).",
"Raise the level of the vocals.",
"Give the song a wider stereo image.",
]],
inputs=[prompt],
label="Prompt Examples",
)
with gr.Column(scale=1):
out_audio = gr.Audio(label="Enhanced Audio (output)")
status = gr.Textbox(label="Status / Messages", interactive=False, lines=8)
# --- Wire up the sample loader ---
# 1) Load samples on button click (lazy clone)
load_result = load_btn.click(
fn=load_examples,
inputs=None,
outputs=None
)
# Manually map the dict result to components via .then (Gradio v5 API)
load_result.then(lambda d: d.get("choices", []), None, samples_dropdown)
load_result.then(lambda d: d.get("paths", []), None, samples_state)
load_result.then(lambda d: d.get("status", ""), None, status)
# 2) When a sample is chosen, set audio path + suggested prompt
samples_dropdown.change(
fn=set_example_selection,
inputs=[samples_dropdown, samples_state],
outputs=[in_audio, prompt],
)
# --- Enhance button ---
run_btn.click(
fn=enhance_audio_ui,
inputs=[in_audio, prompt],
outputs=[out_audio, status],
concurrency_limit=1,
)
# Expose all common names the supervisor might look for
demo = _demo.queue(max_size=16)
iface = demo
app = demo
# Local debugging only
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|