File size: 12,473 Bytes
5bce909
3c1f2a9
 
 
c6d1d61
3387a76
ed317eb
 
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d1d61
5bce909
 
 
 
 
 
c6d1d61
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d1d61
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d1d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bce909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d1d61
 
5bce909
 
c6d1d61
 
 
 
 
 
 
5bce909
 
 
c6d1d61
 
 
 
 
 
 
 
 
 
 
 
 
5bce909
 
30c0cfe
c6d1d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bce909
 
 
 
 
 
30c0cfe
5bce909
 
 
 
addbeeb
5bce909
30c0cfe
c6d1d61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# ========== MUST BE FIRST: Gradio SDK entry + ZeroGPU probes ==========
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")

# Optional: 'spaces' present on Spaces; harmless to try locally.
try:
    import spaces
except Exception:
    class _DummySpaces:
        def GPU(self, *_, **__):
            def deco(fn): return fn
            return deco
    spaces = _DummySpaces()

# PUBLIC names so ZeroGPU supervisor can detect them
@spaces.GPU(duration=10)
def gpu_probe(a: int = 1, b: int = 1):
    return a + b

@spaces.GPU(duration=10)
def gpu_echo(x: str = "ok"):
    return x

# ========== Standard imports ==========
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional, List, Dict, Any

import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download

# ZeroGPU runtime hint (safe on CPU)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"

SPACE_ROOT   = Path(__file__).parent.resolve()
REPO_DIR     = SPACE_ROOT / "SonicMasterRepo"
REPO_URL     = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR    = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)

# ========== Lazy resources (no heavy work at import) ==========
_weights_path: Optional[Path] = None
_repo_ready: bool = False

def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
    """Download/resolve weights lazily."""
    global _weights_path
    if _weights_path is None:
        if progress: progress(0.10, desc="Downloading model weights (first run)")
        wp = hf_hub_download(
            repo_id=WEIGHTS_REPO,
            filename=WEIGHTS_FILE,
            local_dir=str(CACHE_DIR),
            local_dir_use_symlinks=False,
            force_download=False,
            resume_download=True,
        )
        _weights_path = Path(wp)
    return _weights_path

def ensure_repo(progress: Optional[gr.Progress] = None) -> Path:
    """Clone the repo lazily and add to sys.path."""
    global _repo_ready
    if not _repo_ready:
        if not REPO_DIR.exists():
            if progress: progress(0.18, desc="Cloning SonicMaster repo (first run)")
            subprocess.run(
                ["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
                check=True,
            )
        if REPO_DIR.as_posix() not in sys.path:
            sys.path.append(REPO_DIR.as_posix())
        _repo_ready = True
    return REPO_DIR

# ========== Helpers ==========
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
    # Ensure shape (samples, channels)
    if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
        wav = wav.T
    if wav.dtype == np.float64:
        wav = wav.astype(np.float32)
    sf.write(path.as_posix(), wav, sr)

def read_audio(path: str) -> Tuple[np.ndarray, int]:
    wav, sr = sf.read(path, always_2d=False)
    if wav.dtype == np.float64:
        wav = wav.astype(np.float32)
    return wav, sr

def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
    # Try common flag layouts
    return [
        [py, script.as_posix(), "--ckpt",   ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
        [py, script.as_posix(), "--weights",ckpt.as_posix(), "--input", inp.as_posix(), "--text",   prompt, "--out",    out.as_posix()],
        [py, script.as_posix(), "--ckpt",   ckpt.as_posix(), "--input", inp.as_posix(), "--text",   prompt, "--output", out.as_posix()],
    ]

def run_sonicmaster_cli(
    input_wav_path: Path,
    prompt: str,
    out_path: Path,
    progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
    """Run inference scripts via subprocess; return (ok, message)."""
    if progress: progress(0.14, desc="Preparing inference")
    ckpt = get_weights_path(progress=progress)
    repo = ensure_repo(progress=progress)

    candidates = [repo / "infer_single.py", repo / "inference_fullsong.py", repo / "inference_ptload_batch.py"]
    scripts = [s for s in candidates if s.exists()]
    if not scripts:
        return False, "No inference script found in the repo (expected infer_single.py or similar)."

    py = sys.executable or "python3"
    env = os.environ.copy()

    last_err = ""
    for sidx, script in enumerate(scripts, 1):
        for cidx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), 1):
            try:
                if progress:
                    progress(min(0.20 + 0.08 * (sidx + cidx), 0.70), desc=f"Running {script.name} (try {sidx}.{cidx})")
                res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
                if out_path.exists() and out_path.stat().st_size > 0:
                    if progress: progress(0.88, desc="Post-processing output")
                    return True, (res.stdout or "Inference completed.").strip()
                last_err = f"{script.name} produced no output file."
            except subprocess.CalledProcessError as e:
                snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
                last_err = snippet if snippet else f"{script.name} failed with return code {e.returncode}."
            except Exception as e:
                import traceback
                last_err = f"Unexpected error: {e}\n{traceback.format_exc()}"
    return False, last_err or "All candidate commands failed."

# ========== GPU path (called only if ZeroGPU/GPU available) ==========
@spaces.GPU(duration=60)
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
    try:
        import torch  # noqa: F401
    except Exception:
        pass
    from pathlib import Path as _P
    return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)

def _has_cuda() -> bool:
    try:
        import torch
        return torch.cuda.is_available()
    except Exception:
        return False

# ========== Examples (lazy) ==========
PROMPTS_10 = [
    "Increase the clarity of this song by emphasizing treble frequencies.",
    "Make this song sound more boomy by amplifying the low end bass frequencies.",
    "Can you make this sound louder, please?",
    "Make the audio smoother and less distorted.",
    "Improve the balance in this song.",
    "Disentangle the left and right channels to give this song a stereo feeling.",
    "Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
    "Raise the level of the vocals, please.",
    "Increase the clarity of this song by emphasizing treble frequencies.",
    "Please, dereverb this audio.",
]

def list_example_files(progress: Optional[gr.Progress] = None) -> List[str]:
    """Return up to 10 .wav paths inside repo/samples/inputs (lazy clone)."""
    repo = ensure_repo(progress=progress)
    wav_dir = repo / "samples" / "inputs"
    files = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
    return [p.as_posix() for p in files[:10]]

def load_examples(_: Any = None, progress=gr.Progress()) -> Dict[str, Any]:
    """Button/auto-load handler: populate dropdown choices and status text."""
    paths = list_example_files(progress=progress)
    if not paths:
        return {
            "choices": [],
            "status": "No sample .wav files found in repo/samples/inputs.",
        }
    labels = [f"{i+1:02d} β€” {Path(p).name}" for i, p in enumerate(paths)]
    return {
        "choices": labels,
        "paths": paths,
        "status": f"Loaded {len(paths)} sample audios."
    }

def set_example_selection(idx_label: str, paths: List[str]) -> Tuple[str, str]:
    """When user picks an example, set the audio path + a suggested prompt."""
    if not idx_label or not paths:
        return "", ""
    try:
        # label "01 β€” file.wav" -> index 0
        idx = int(idx_label.split()[0]) - 1
    except Exception:
        idx = 0
    idx = max(0, min(idx, len(paths)-1))
    audio_path = paths[idx]
    prompt = PROMPTS_10[idx] if idx < len(PROMPTS_10) else PROMPTS_10[-1]
    return audio_path, prompt

# ========== Gradio callback ==========
def enhance_audio_ui(
    audio_path: str,
    prompt: str,
    progress=gr.Progress(track_tqdm=True),
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
    """
    Returns (audio, message). On failure, audio=None and message=error text.
    """
    try:
        if not prompt:
            raise gr.Error("Please provide a text prompt.")
        if not audio_path:
            raise gr.Error("Please upload or select an input audio file.")

        wav, sr = read_audio(audio_path)
        tmp_in  = SPACE_ROOT / "tmp_in.wav"
        tmp_out = SPACE_ROOT / "tmp_out.wav"
        if tmp_out.exists():
            try: tmp_out.unlink()
            except Exception: pass

        if progress: progress(0.06, desc="Preparing audio")
        save_temp_wav(wav, sr, tmp_in)

        use_gpu_call = USE_ZEROGPU or _has_cuda()
        if progress: progress(0.12, desc="Starting inference")

        if use_gpu_call:
            ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
        else:
            ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)

        if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
            out_wav, out_sr = read_audio(tmp_out.as_posix())
            return (out_sr, out_wav), (msg or "Done.")
        else:
            return None, (msg or "Inference failed without a specific error message.")

    except gr.Error as e:
        return None, str(e)
    except Exception as e:
        import traceback
        return None, f"Unexpected error: {e}\n{traceback.format_exc()}"

# ========== Gradio UI ==========
with gr.Blocks(title="SonicMaster – Text-Guided Restoration & Mastering", fill_height=True) as _demo:
    gr.Markdown(
        "## 🎧 SonicMaster\n"
        "Upload audio or **load sample audios**, write a prompt, then click **Enhance**.\n"
        "- On failure, the **Status** box shows the exact error "
    )
    with gr.Row():
        with gr.Column(scale=1):
            # Sample loader (lazy)
            with gr.Accordion("Sample audios (10)", open=False):
                load_btn = gr.Button("πŸ“₯ Load 10 sample audios")
                samples_dropdown = gr.Dropdown(choices=[], label="Pick a sample", interactive=True)
                samples_state = gr.State([])  # holds absolute paths

            in_audio = gr.Audio(label="Input Audio", type="filepath")
            prompt   = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten vocals.")
            run_btn  = gr.Button("πŸš€ Enhance", variant="primary")

            # Optional quick prompt examples (text-only)
            gr.Examples(
                examples=[[p] for p in [
                    "Reduce roominess/echo (dereverb).",
                    "Raise the level of the vocals.",
                    "Give the song a wider stereo image.",
                ]],
                inputs=[prompt],
                label="Prompt Examples",
            )

        with gr.Column(scale=1):
            out_audio = gr.Audio(label="Enhanced Audio (output)")
            status    = gr.Textbox(label="Status / Messages", interactive=False, lines=8)

    # --- Wire up the sample loader ---
    # 1) Load samples on button click (lazy clone)
    load_result = load_btn.click(
        fn=load_examples,
        inputs=None,
        outputs=None
    )
    # Manually map the dict result to components via .then (Gradio v5 API)
    load_result.then(lambda d: d.get("choices", []), None, samples_dropdown)
    load_result.then(lambda d: d.get("paths", []),   None, samples_state)
    load_result.then(lambda d: d.get("status", ""),  None, status)

    # 2) When a sample is chosen, set audio path + suggested prompt
    samples_dropdown.change(
        fn=set_example_selection,
        inputs=[samples_dropdown, samples_state],
        outputs=[in_audio, prompt],
    )

    # --- Enhance button ---
    run_btn.click(
        fn=enhance_audio_ui,
        inputs=[in_audio, prompt],
        outputs=[out_audio, status],
        concurrency_limit=1,
    )

# Expose all common names the supervisor might look for
demo = _demo.queue(max_size=16)
iface = demo
app = demo

# Local debugging only
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)