Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,203 +1,289 @@
|
|
|
|
|
| 1 |
# ---------- MUST BE FIRST: Gradio CDN + ZeroGPU probe ----------
|
| 2 |
import os
|
| 3 |
os.environ.setdefault("GRADIO_USE_CDN", "true")
|
| 4 |
|
| 5 |
-
# A GPU-decorated function MUST exist at import time for ZeroGPU.
|
| 6 |
-
# Import spaces unconditionally and register a tiny probe.
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
@spaces.GPU(duration=10)
|
| 10 |
-
def _gpu_probe() ->
|
| 11 |
-
# Never called;
|
| 12 |
-
return
|
| 13 |
|
| 14 |
# ---------- Standard imports ----------
|
| 15 |
-
import sys
|
| 16 |
-
import subprocess
|
| 17 |
from pathlib import Path
|
| 18 |
-
from typing import Tuple,
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
import gradio as gr
|
| 21 |
import numpy as np
|
| 22 |
import soundfile as sf
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
|
| 27 |
-
|
| 28 |
SPACE_ROOT = Path(__file__).parent.resolve()
|
| 29 |
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
|
|
|
|
| 30 |
WEIGHTS_REPO = "amaai-lab/SonicMaster"
|
| 31 |
WEIGHTS_FILE = "model.safetensors"
|
| 32 |
CACHE_DIR = SPACE_ROOT / "weights"
|
| 33 |
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
repo_id=WEIGHTS_REPO,
|
| 40 |
filename=WEIGHTS_FILE,
|
| 41 |
-
local_dir=CACHE_DIR
|
| 42 |
local_dir_use_symlinks=False,
|
| 43 |
force_download=False,
|
| 44 |
resume_download=True,
|
| 45 |
)
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
return REPO_DIR
|
| 60 |
|
| 61 |
-
# ----------
|
| 62 |
-
def build_examples():
|
| 63 |
-
repo = ensure_repo()
|
| 64 |
-
wav_dir = repo / "samples" / "inputs"
|
| 65 |
-
wav_paths = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
|
| 66 |
-
prompts = [
|
| 67 |
-
"Increase the clarity of this song by emphasizing treble frequencies.",
|
| 68 |
-
"Make this song sound more boomy by amplifying the low end bass frequencies.",
|
| 69 |
-
"Can you make this sound louder, please?",
|
| 70 |
-
"Make the audio smoother and less distorted.",
|
| 71 |
-
"Improve the balance in this song.",
|
| 72 |
-
"Disentangle the left and right channels to give this song a stereo feeling.",
|
| 73 |
-
"Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
|
| 74 |
-
"Raise the level of the vocals, please.",
|
| 75 |
-
"Increase the clarity of this song by emphasizing treble frequencies.",
|
| 76 |
-
"Please, dereverb this audio.",
|
| 77 |
-
]
|
| 78 |
-
return [[p.as_posix(), prompts[i] if i < len(prompts) else prompts[-1]]
|
| 79 |
-
for i, p in enumerate(wav_paths[:10])]
|
| 80 |
-
|
| 81 |
-
# ---------- 4) I/O helpers ----------
|
| 82 |
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
def read_audio(path: str) -> Tuple[np.ndarray, int]:
|
| 88 |
wav, sr = sf.read(path, always_2d=False)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
py = sys.executable or "python3"
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
for script in
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
return True
|
| 130 |
-
except Exception:
|
| 131 |
-
continue
|
| 132 |
-
return False
|
| 133 |
-
|
| 134 |
-
# ---------- 6) REAL GPU function (always defined; only CALLED on ZeroGPU) ----------
|
| 135 |
@spaces.GPU(duration=180)
|
| 136 |
-
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> bool:
|
| 137 |
-
# Import torch here so CUDA initializes inside GPU context
|
| 138 |
try:
|
|
|
|
| 139 |
import torch # noqa: F401
|
| 140 |
except Exception:
|
| 141 |
pass
|
| 142 |
from pathlib import Path as _P
|
| 143 |
-
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path),
|
| 144 |
-
|
| 145 |
-
# ---------- 7) Gradio callback ----------
|
| 146 |
-
def enhance_audio_ui(audio_path: str,
|
| 147 |
-
prompt: str,
|
| 148 |
-
progress=gr.Progress(track_tqdm=True)) -> Tuple[int, np.ndarray]:
|
| 149 |
-
if not audio_path or not prompt:
|
| 150 |
-
raise gr.Error("Please provide audio and a text prompt.")
|
| 151 |
-
|
| 152 |
-
wav, sr = read_audio(audio_path)
|
| 153 |
-
tmp_in, tmp_out = SPACE_ROOT / "tmp_in.wav", SPACE_ROOT / "tmp_out.wav"
|
| 154 |
-
if tmp_out.exists():
|
| 155 |
-
try: tmp_out.unlink()
|
| 156 |
-
except: pass
|
| 157 |
-
save_temp_wav(wav, sr, tmp_in)
|
| 158 |
-
|
| 159 |
-
if progress: progress(0.3, desc="Starting inference")
|
| 160 |
-
if USE_ZEROGPU:
|
| 161 |
-
ok = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
|
| 162 |
-
else:
|
| 163 |
-
ok = run_sonicmaster_cli(tmp_in, prompt, tmp_out, _logs=[], progress=progress)
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
# ---------- 8) Gradio UI ----------
|
| 172 |
with gr.Blocks(title="SonicMaster β Text-Guided Restoration & Mastering", fill_height=True) as demo:
|
| 173 |
-
gr.Markdown("## π§ SonicMaster\nUpload
|
|
|
|
|
|
|
| 174 |
with gr.Row():
|
| 175 |
-
with gr.Column():
|
| 176 |
in_audio = gr.Audio(label="Input Audio", type="filepath")
|
| 177 |
-
prompt
|
| 178 |
-
run_btn
|
| 179 |
-
gr.Examples(
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
out_audio = gr.Audio(label="Enhanced Audio (output)")
|
| 182 |
-
|
| 183 |
-
inputs=[in_audio, prompt],
|
| 184 |
-
outputs=[out_audio],
|
| 185 |
-
concurrency_limit=1)
|
| 186 |
|
| 187 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
from fastapi import FastAPI, Request
|
| 189 |
from starlette.responses import PlainTextResponse
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
| 193 |
|
| 194 |
app = FastAPI()
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
@app.exception_handler(ClientDisconnect)
|
| 197 |
async def client_disconnect_handler(request: Request, exc: ClientDisconnect):
|
| 198 |
return PlainTextResponse("Client disconnected", status_code=499)
|
| 199 |
|
| 200 |
-
|
|
|
|
| 201 |
|
| 202 |
if __name__ == "__main__":
|
| 203 |
import uvicorn
|
|
|
|
| 1 |
+
|
| 2 |
# ---------- MUST BE FIRST: Gradio CDN + ZeroGPU probe ----------
|
| 3 |
import os
|
| 4 |
os.environ.setdefault("GRADIO_USE_CDN", "true")
|
| 5 |
|
|
|
|
|
|
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
@spaces.GPU(duration=10)
|
| 9 |
+
def _gpu_probe(a: int = 1, b: int = 1) -> int:
|
| 10 |
+
# Never called; exists so ZeroGPU startup check passes.
|
| 11 |
+
return a + b
|
| 12 |
|
| 13 |
# ---------- Standard imports ----------
|
|
|
|
|
|
|
| 14 |
from pathlib import Path
|
| 15 |
+
from typing import Optional, Tuple, List
|
| 16 |
+
import subprocess
|
| 17 |
+
import sys
|
| 18 |
+
import traceback
|
| 19 |
|
| 20 |
import gradio as gr
|
| 21 |
import numpy as np
|
| 22 |
import soundfile as sf
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
+
# ---------- Config ----------
|
|
|
|
|
|
|
| 26 |
SPACE_ROOT = Path(__file__).parent.resolve()
|
| 27 |
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
|
| 28 |
+
REPO_URL = "https://github.com/AMAAI-Lab/SonicMaster"
|
| 29 |
WEIGHTS_REPO = "amaai-lab/SonicMaster"
|
| 30 |
WEIGHTS_FILE = "model.safetensors"
|
| 31 |
CACHE_DIR = SPACE_ROOT / "weights"
|
| 32 |
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
| 33 |
|
| 34 |
+
# ZeroGPU detection (heuristic)
|
| 35 |
+
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
|
| 36 |
+
|
| 37 |
+
# ---------- Lazy resources ----------
|
| 38 |
+
_weights_path: Optional[Path] = None
|
| 39 |
+
_repo_ready: bool = False
|
| 40 |
+
|
| 41 |
+
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
|
| 42 |
+
"""Fetch model weights lazily and cache the resolved path."""
|
| 43 |
+
global _weights_path
|
| 44 |
+
if _weights_path is None:
|
| 45 |
+
if progress:
|
| 46 |
+
progress(0.10, desc="Downloading model weights (first run)")
|
| 47 |
+
wp = hf_hub_download(
|
| 48 |
repo_id=WEIGHTS_REPO,
|
| 49 |
filename=WEIGHTS_FILE,
|
| 50 |
+
local_dir=str(CACHE_DIR),
|
| 51 |
local_dir_use_symlinks=False,
|
| 52 |
force_download=False,
|
| 53 |
resume_download=True,
|
| 54 |
)
|
| 55 |
+
_weights_path = Path(wp)
|
| 56 |
+
return _weights_path
|
| 57 |
|
| 58 |
+
def ensure_repo(progress: Optional[gr.Progress] = None) -> Path:
|
| 59 |
+
"""Clone the inference repo lazily and put it on sys.path."""
|
| 60 |
+
global _repo_ready
|
| 61 |
+
if not _repo_ready:
|
| 62 |
+
if not REPO_DIR.exists():
|
| 63 |
+
if progress:
|
| 64 |
+
progress(0.18, desc="Cloning SonicMaster repo (first run)")
|
| 65 |
+
subprocess.run(
|
| 66 |
+
["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
|
| 67 |
+
check=True,
|
| 68 |
+
)
|
| 69 |
+
if REPO_DIR.as_posix() not in sys.path:
|
| 70 |
+
sys.path.append(REPO_DIR.as_posix())
|
| 71 |
+
_repo_ready = True
|
| 72 |
return REPO_DIR
|
| 73 |
|
| 74 |
+
# ---------- Audio helpers ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
|
| 76 |
+
# Ensure (N, C) shape for soundfile
|
| 77 |
+
if wav.ndim == 1:
|
| 78 |
+
data = wav
|
| 79 |
+
else:
|
| 80 |
+
# (channels, samples) -> (samples, channels)
|
| 81 |
+
data = wav.T if wav.shape[0] < wav.shape[1] else wav
|
| 82 |
+
if data.dtype == np.float64:
|
| 83 |
+
data = data.astype(np.float32)
|
| 84 |
+
sf.write(path.as_posix(), data, sr)
|
| 85 |
|
| 86 |
def read_audio(path: str) -> Tuple[np.ndarray, int]:
|
| 87 |
wav, sr = sf.read(path, always_2d=False)
|
| 88 |
+
if wav.dtype == np.float64:
|
| 89 |
+
wav = wav.astype(np.float32)
|
| 90 |
+
return wav, sr
|
| 91 |
+
|
| 92 |
+
# ---------- CLI runner ----------
|
| 93 |
+
def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
|
| 94 |
+
"""Try multiple arg styles commonly found in repos."""
|
| 95 |
+
combos = [
|
| 96 |
+
# infer_single.py (common)
|
| 97 |
+
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
|
| 98 |
+
[py, script.as_posix(), "--weights", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--out", out.as_posix()],
|
| 99 |
+
# other possible entrypoints
|
| 100 |
+
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--output", out.as_posix()],
|
| 101 |
+
]
|
| 102 |
+
return combos
|
| 103 |
+
|
| 104 |
+
def run_sonicmaster_cli(
|
| 105 |
+
input_wav_path: Path,
|
| 106 |
+
prompt: str,
|
| 107 |
+
out_path: Path,
|
| 108 |
+
progress: Optional[gr.Progress] = None,
|
| 109 |
+
) -> Tuple[bool, str]:
|
| 110 |
+
"""
|
| 111 |
+
Returns (ok, message). Captures stderr/stdout and returns first non-empty output file.
|
| 112 |
+
"""
|
| 113 |
+
if progress:
|
| 114 |
+
progress(0.14, desc="Preparing inference")
|
| 115 |
+
ckpt = get_weights_path(progress=progress)
|
| 116 |
+
repo = ensure_repo(progress=progress)
|
| 117 |
+
|
| 118 |
+
# Candidate scripts to try
|
| 119 |
+
script_candidates = [
|
| 120 |
+
repo / "infer_single.py",
|
| 121 |
+
repo / "inference_fullsong.py",
|
| 122 |
+
repo / "inference_ptload_batch.py",
|
| 123 |
+
]
|
| 124 |
+
scripts = [s for s in script_candidates if s.exists()]
|
| 125 |
+
if not scripts:
|
| 126 |
+
return False, "No inference script found in the repo (expected infer_single.py or similar)."
|
| 127 |
|
| 128 |
py = sys.executable or "python3"
|
| 129 |
+
env = os.environ.copy() # keep CUDA_VISIBLE_DEVICES etc.
|
| 130 |
+
|
| 131 |
+
last_err = ""
|
| 132 |
+
for idx, script in enumerate(scripts, start=1):
|
| 133 |
+
for jdx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), start=1):
|
| 134 |
+
try:
|
| 135 |
+
if progress:
|
| 136 |
+
progress(min(0.20 + 0.08 * (idx + jdx), 0.70), desc=f"Running {script.name} (try {idx}.{jdx})")
|
| 137 |
+
res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
|
| 138 |
+
if out_path.exists() and out_path.stat().st_size > 0:
|
| 139 |
+
if progress:
|
| 140 |
+
progress(0.88, desc="Post-processing output")
|
| 141 |
+
# Return any informative stdout as message
|
| 142 |
+
msg = (res.stdout or "").strip()
|
| 143 |
+
return True, msg if msg else "Inference completed."
|
| 144 |
+
else:
|
| 145 |
+
last_err = f"{script.name} produced no output file."
|
| 146 |
+
except subprocess.CalledProcessError as e:
|
| 147 |
+
# Collect stderr/stdout for the user
|
| 148 |
+
snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
|
| 149 |
+
last_err = snippet if snippet else f"{script.name} failed with return code {e.returncode}."
|
| 150 |
+
except Exception as e:
|
| 151 |
+
last_err = f"Unexpected error: {e}\n{traceback.format_exc()}"
|
| 152 |
+
|
| 153 |
+
return False, last_err or "All candidate commands failed without an error message."
|
| 154 |
+
|
| 155 |
+
# ---------- REAL GPU function (called only if using ZeroGPU / GPU available) ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
@spaces.GPU(duration=180)
|
| 157 |
+
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
|
|
|
|
| 158 |
try:
|
| 159 |
+
# Initialize CUDA inside the GPU context
|
| 160 |
import torch # noqa: F401
|
| 161 |
except Exception:
|
| 162 |
pass
|
| 163 |
from pathlib import Path as _P
|
| 164 |
+
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
def _has_cuda() -> bool:
|
| 167 |
+
try:
|
| 168 |
+
import torch
|
| 169 |
+
return torch.cuda.is_available()
|
| 170 |
+
except Exception:
|
| 171 |
+
return False
|
| 172 |
+
|
| 173 |
+
# ---------- UI callback ----------
|
| 174 |
+
def enhance_audio_ui(
|
| 175 |
+
audio_path: str,
|
| 176 |
+
prompt: str,
|
| 177 |
+
progress=gr.Progress(track_tqdm=True),
|
| 178 |
+
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
|
| 179 |
+
"""
|
| 180 |
+
Returns (audio, message). On failure, audio=None and message=error text.
|
| 181 |
+
"""
|
| 182 |
+
try:
|
| 183 |
+
if not prompt:
|
| 184 |
+
raise gr.Error("Please provide a text prompt.")
|
| 185 |
+
if not audio_path:
|
| 186 |
+
raise gr.Error("Please upload or select an input audio file.")
|
| 187 |
+
|
| 188 |
+
wav, sr = read_audio(audio_path)
|
| 189 |
+
|
| 190 |
+
tmp_in = SPACE_ROOT / "tmp_in.wav"
|
| 191 |
+
tmp_out = SPACE_ROOT / "tmp_out.wav"
|
| 192 |
+
if tmp_out.exists():
|
| 193 |
+
try:
|
| 194 |
+
tmp_out.unlink()
|
| 195 |
+
except Exception:
|
| 196 |
+
pass
|
| 197 |
+
|
| 198 |
+
if progress:
|
| 199 |
+
progress(0.06, desc="Preparing audio")
|
| 200 |
+
save_temp_wav(wav, sr, tmp_in)
|
| 201 |
+
|
| 202 |
+
# Choose execution path: prefer real GPU if available, else CPU
|
| 203 |
+
use_gpu_call = USE_ZEROGPU or _has_cuda()
|
| 204 |
+
|
| 205 |
+
if progress:
|
| 206 |
+
progress(0.12, desc="Starting inference")
|
| 207 |
+
if use_gpu_call:
|
| 208 |
+
ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
|
| 209 |
+
else:
|
| 210 |
+
ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)
|
| 211 |
+
|
| 212 |
+
if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
|
| 213 |
+
# Return output audio by filepath (lighter than big arrays)
|
| 214 |
+
# Gradio Audio accepts a (sr, np.ndarray) OR a file path; giving file path is fine.
|
| 215 |
+
return (None, f"Saved output: {tmp_out.name}\n{msg or ''}") if False else (read_audio(tmp_out.as_posix()), msg or "Done.")
|
| 216 |
+
else:
|
| 217 |
+
# On failure: DON'T echo input audio β return None and the error message
|
| 218 |
+
if not msg:
|
| 219 |
+
msg = "Inference failed without a specific error message."
|
| 220 |
+
return (None, msg.strip())
|
| 221 |
+
|
| 222 |
+
except gr.Error as e:
|
| 223 |
+
return (None, str(e))
|
| 224 |
+
except Exception as e:
|
| 225 |
+
return (None, f"Unexpected error: {e}\n{traceback.format_exc()}")
|
| 226 |
+
|
| 227 |
+
# ---------- Gradio UI ----------
|
| 228 |
+
PROMPT_EXAMPLES = [
|
| 229 |
+
["Increase the clarity of this song by emphasizing treble frequencies."],
|
| 230 |
+
["Make this song sound more boomy by amplifying the low end bass frequencies."],
|
| 231 |
+
["Make the audio smoother and less distorted."],
|
| 232 |
+
["Improve the balance in this song."],
|
| 233 |
+
["Reduce roominess/echo (dereverb)."],
|
| 234 |
+
["Raise the level of the vocals."],
|
| 235 |
+
["Give the song a wider stereo image."],
|
| 236 |
+
]
|
| 237 |
|
|
|
|
| 238 |
with gr.Blocks(title="SonicMaster β Text-Guided Restoration & Mastering", fill_height=True) as demo:
|
| 239 |
+
gr.Markdown("## π§ SonicMaster\nUpload audio, enter a prompt, then click **Enhance**.\n"
|
| 240 |
+
"- Progress appears below during the first run (weights/repo download).\n"
|
| 241 |
+
"- If something fails, you'll see the **error message** instead of the input audio.")
|
| 242 |
with gr.Row():
|
| 243 |
+
with gr.Column(scale=1):
|
| 244 |
in_audio = gr.Audio(label="Input Audio", type="filepath")
|
| 245 |
+
prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten the vocals.")
|
| 246 |
+
run_btn = gr.Button("π Enhance", variant="primary")
|
| 247 |
+
gr.Examples(
|
| 248 |
+
examples=PROMPT_EXAMPLES,
|
| 249 |
+
inputs=[prompt], # prompt-only examples to avoid heavy file ops at startup
|
| 250 |
+
label="Prompt Examples",
|
| 251 |
+
)
|
| 252 |
+
with gr.Column(scale=1):
|
| 253 |
out_audio = gr.Audio(label="Enhanced Audio (output)")
|
| 254 |
+
status = gr.Textbox(label="Status / Messages", interactive=False, lines=6)
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
+
# On click, return audio + message
|
| 257 |
+
run_btn.click(
|
| 258 |
+
fn=enhance_audio_ui,
|
| 259 |
+
inputs=[in_audio, prompt],
|
| 260 |
+
outputs=[out_audio, status],
|
| 261 |
+
concurrency_limit=1,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Queue BEFORE mounting so the mounted app is ready immediately
|
| 265 |
+
demo = demo.queue(concurrency_count=1, max_size=16)
|
| 266 |
+
|
| 267 |
+
# ---------- FastAPI mount & health ----------
|
| 268 |
from fastapi import FastAPI, Request
|
| 269 |
from starlette.responses import PlainTextResponse
|
| 270 |
+
try:
|
| 271 |
+
from starlette.exceptions import ClientDisconnect # Starlette β₯0.27
|
| 272 |
+
except Exception:
|
| 273 |
+
from starlette.requests import ClientDisconnect # fallback for older versions
|
| 274 |
|
| 275 |
app = FastAPI()
|
| 276 |
|
| 277 |
+
@app.get("/health")
|
| 278 |
+
def _health():
|
| 279 |
+
return {"ok": True}
|
| 280 |
+
|
| 281 |
@app.exception_handler(ClientDisconnect)
|
| 282 |
async def client_disconnect_handler(request: Request, exc: ClientDisconnect):
|
| 283 |
return PlainTextResponse("Client disconnected", status_code=499)
|
| 284 |
|
| 285 |
+
# Mount Gradio at root (Spaces looks here)
|
| 286 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 287 |
|
| 288 |
if __name__ == "__main__":
|
| 289 |
import uvicorn
|