Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load the tokenizer and model | |
| model_name = "unsloth/Llama-3.2-1B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Define the generation function | |
| def generate_response(prompt): | |
| inputs = tokenizer.encode(prompt, return_tensors="pt") | |
| outputs = model.generate( | |
| inputs, | |
| max_length=512, | |
| num_return_sequences=1, | |
| do_sample=True, | |
| temperature=0.7, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."), | |
| outputs=gr.Textbox(label="Generated Response"), | |
| title="Llama-3.2-1B-Instruct Model", | |
| description="A simple interface to interact with the Llama-3.2-1B-Instruct model.", | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch() |