Spaces:
Runtime error
Runtime error
File size: 20,025 Bytes
1cdc47e 82d4b57 1cdc47e a06b509 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 4e2aa43 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 4e2aa43 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 4e2aa43 82d4b57 1cdc47e 82d4b57 1cdc47e 4e2aa43 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 4e2aa43 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import os.path as osp
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import cv2
from threading import Thread
from queue import Queue
import json
import torch.multiprocessing as mp
from functools import partial
from io import StringIO
import signal
def signal_handler(sig, frame):
print("\nInterrupted by user, shutting down...")
if 'loader_thread' in globals() and loader_thread.is_alive():
loader_thread.join(timeout=1.0) # Give the thread 1 second to finish
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free GPU memory immediately
os.exit(0)
# Register the signal handler
signal.signal(signal.SIGINT, signal_handler)
import _init_paths
from _init_paths import get_path
from utils.utilitys import PreProcess, load_json, plot_keypoint, write
from config import cfg, update_config
from utils.transforms import *
from utils.inference import get_final_preds
import models
sys.path.pop(0)
pre_dir, cur_dir, chk_root, data_root, lib_root, output_root = get_path(__file__)
cfg_dir = pre_dir + '/experiments/coco/hrnet/'
model_dir = chk_root + 'hrnet/pose_coco/'
sys.path.insert(0, lib_root)
from detector import load_model as yolo_model
from detector import yolo_human_det as yolo_det
from track.sort import Sort
sys.path.pop(0)
# Set multiprocessing start method
mp.set_start_method('spawn', force=True)
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
parser.add_argument('--cfg', type=str, default=cfg_dir + 'w48_384x288_adam_lr1e-3.yaml')
parser.add_argument('opts', nargs=argparse.REMAINDER, default=None)
parser.add_argument('--modelDir', type=str, default=model_dir + 'pose_hrnet_w48_384x288.pth')
parser.add_argument('--det-dim', type=int, default=416)
parser.add_argument('--thred-score', type=float, default=0.50)
parser.add_argument('-a', '--animation', action='store_true', help='output animation')
parser.add_argument('-np', '--num-person', type=int, default=1)
parser.add_argument("-v", "--video", type=str, default='camera')
parser.add_argument('--batch-size', type=int, default=8) # Reduced batch size
args = parser.parse_args()
return args
def reset_config(args):
update_config(cfg, args)
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
def model_load(config, use_fp16=False):
model = eval('models.' + config.MODEL.NAME + '.get_pose_net')(config, is_train=False)
state_dict = torch.load(config.OUTPUT_DIR, map_location=torch.device('cpu'))
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
if torch.cuda.is_available() and use_fp16:
model = model.half().cuda() # Use FP16 if specified and CUDA available
elif torch.cuda.is_available():
model = model.cuda()
model.eval()
return model
def load_default_model():
args = parse_args()
reset_config(args)
model = eval('models.' + cfg.MODEL.NAME + '.get_pose_net')(cfg, is_train=False)
if torch.cuda.is_available():
model = model.cuda()
state_dict = torch.load(cfg.OUTPUT_DIR)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
model.eval()
return model
def frame_loader(video, queue, video_length):
cap = cv2.VideoCapture(video)
for _ in range(video_length):
ret, frame = cap.read()
if not ret:
break
queue.put(frame)
queue.put(None)
cap.release()
def process_batch(frames, human_model, pose_model, det_dim, num_person, thred_score, use_fp16, device, people_sort):
if not frames:
return [], []
batch_bboxs = []
batch_centers = []
batch_scales = []
batch_inputs = []
for frame in frames:
bboxs, _ = yolo_det(frame, human_model, reso=det_dim, confidence=thred_score)
if bboxs is None or not bboxs.any():
continue
people_track = people_sort.update(bboxs)
if people_track.shape[0] == 0:
continue
num_to_track = min(num_person, people_track.shape[0])
people_track_ = people_track[-num_to_track:, :-1]
track_bboxs = np.round(people_track_, 2).tolist()
inputs, _, center, scale = PreProcess(frame, track_bboxs, cfg, num_to_track)
inputs = inputs[:, [2, 1, 0]] # BGR to RGB
batch_bboxs.append(track_bboxs)
batch_centers.append(center)
batch_scales.append(scale)
batch_inputs.append(inputs)
if not batch_inputs:
return [], []
inputs = torch.cat(batch_inputs, dim=0).to(device)
if use_fp16 and device.type == 'cuda':
inputs = inputs.half() # Convert to FP16 to match model precision
with torch.no_grad():
outputs = pose_model(inputs)
outputs = outputs.cpu().float() # Ensure output is FP32 for post-processing
kpts_result = []
scores_result = []
offset = 0
for i, (center, scale) in enumerate(zip(batch_centers, batch_scales)):
batch_size = len(batch_bboxs[i])
preds, maxvals = get_final_preds(cfg, outputs[offset:offset + batch_size].numpy(),
np.asarray(center).flatten(), np.asarray(scale).flatten())
offset += batch_size
kpts = np.zeros((batch_size, 17, 2), dtype=np.float32)
scores = np.zeros((batch_size, 17), dtype=np.float32)
for j in range(batch_size):
kpts[j] = preds[j]
scores[j] = maxvals[j].squeeze()
kpts_result.append(kpts)
scores_result.append(scores)
return kpts_result, scores_result
def gen_video_kpts(video, det_dim=416, num_person=1, gen_output=False, batch_size=8, animation=False):
def force_exit(sig, frame):
print("\nForce terminating...")
os._exit(1)
signal.signal(signal.SIGINT, force_exit)
args = parse_args()
reset_config(args)
cap = cv2.VideoCapture(video)
assert cap.isOpened(), 'Cannot capture source'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.set_num_threads(max(1, mp.cpu_count() - 1)) # Match thread count to processes
torch.autograd.set_grad_enabled(False) # Explicitly disable gradients
# Determine FP16 usage based on device capability
use_fp16 = device.type == 'cuda' and torch.cuda.get_device_capability()[0] >= 7
batch_size = min(batch_size, torch.cuda.get_device_properties(0).total_memory // (1024**3) if device.type == 'cuda' else mp.cpu_count())
human_model = yolo_model(inp_dim=det_dim)
pose_model = model_load(cfg, use_fp16=use_fp16).to(device)
people_sort = Sort()
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if animation:
kpts_result = []
scores_result = []
for i in range(video_length):
ret, frame = cap.read()
if not ret:
break
bboxs, scores = yolo_det(frame, human_model, reso=det_dim, confidence=args.thred_score)
if bboxs is None or not bboxs.any():
continue
people_track = people_sort.update(bboxs)
if people_track.shape[0] == 1:
people_track_ = people_track[-1, :-1].reshape(1, 4)
elif people_track.shape[0] >= 2:
people_track_ = people_track[-num_person:, :-1].reshape(num_person, 4)
people_track_ = people_track_[::-1]
else:
continue
track_bboxs = []
for bbox in people_track_:
bbox = [round(i, 2) for i in list(bbox)]
track_bboxs.append(bbox)
with torch.no_grad():
inputs, origin_img, center, scale = PreProcess(frame, track_bboxs, cfg, num_person)
inputs = inputs[:, [2, 1, 0]] # BGR to RGB
if device.type == 'cuda':
inputs = inputs.cuda()
if use_fp16:
inputs = inputs.half() # Convert to FP16 if model is in FP16
output = pose_model(inputs)
preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))
if gen_output:
kpts = np.zeros((num_person, 17, 2), dtype=np.float32)
scores = np.zeros((num_person, 17), dtype=np.float32)
for j, kpt in enumerate(preds):
kpts[j] = kpt
for j, score in enumerate(maxvals):
scores[j] = score.squeeze()
kpts_result.append(kpts)
scores_result.append(scores)
else:
index_bboxs = [bbox + [j] for j, bbox in enumerate(track_bboxs)]
list(map(lambda x: write(x, frame), index_bboxs))
plot_keypoint(frame, preds, maxvals, 0.3)
cv2.imshow('frame', frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
else:
frame_queue = Queue(maxsize=batch_size) # Use regular Queue instead of mp.Queue
loader_thread = Thread(target=frame_loader, args=(video, frame_queue, video_length))
loader_thread.start()
# Pre-allocate result arrays
max_frames = video_length
kpts_result = np.zeros((max_frames, num_person, 17, 2), dtype=np.float32)
scores_result = np.zeros((max_frames, num_person, 17), dtype=np.float32)
frame_idx = 0
people_sort = Sort()
try:
if device.type == 'cuda':
batch_frames = []
with torch.no_grad():
for i in range(video_length):
frame = frame_queue.get(timeout=1.0)
if frame is None:
break
batch_frames.append(frame)
if len(batch_frames) >= batch_size:
kpts_batch, scores_batch = process_batch(batch_frames, human_model, pose_model,
det_dim, num_person, args.thred_score,
use_fp16, device, people_sort)
for kpts, scores in zip(kpts_batch, scores_batch):
kpts_result[frame_idx:frame_idx + 1] = kpts[None, :num_person]
scores_result[frame_idx:frame_idx + 1] = scores[None, :num_person]
frame_idx += 1
batch_frames = []
# Print progress every batch
if i % batch_size == 0:
progress = ((i + 1) / video_length) * 100
print(f"PROGRESS:{progress:.2f}%")
# Process remaining frames
if batch_frames:
kpts_batch, scores_batch = process_batch(batch_frames, human_model, pose_model,
det_dim, num_person, args.thred_score,
use_fp16, device, people_sort)
for kpts, scores in zip(kpts_batch, scores_batch):
kpts_result[frame_idx:frame_idx + 1] = kpts[None, :num_person]
scores_result[frame_idx:frame_idx + 1] = scores[None, :num_person]
frame_idx += 1
progress = (frame_idx / video_length) * 100
print(f"PROGRESS:{progress:.2f}%")
else:
# Sequential processing for CPU to avoid multiprocessing overhead
batch_frames = []
with torch.no_grad():
for i in range(video_length):
frame = frame_queue.get(timeout=1.0)
if frame is None:
break
batch_frames.append(frame)
if len(batch_frames) >= batch_size:
kpts_batch, scores_batch = process_batch(batch_frames, human_model, pose_model,
det_dim, num_person, args.thred_score,
use_fp16, device, people_sort)
for kpts, scores in zip(kpts_batch, scores_batch):
kpts_result[frame_idx:frame_idx + 1] = kpts[None, :num_person]
scores_result[frame_idx:frame_idx + 1] = scores[None, :num_person]
frame_idx += 1
batch_frames = []
# Print progress every batch
if i % batch_size == 0:
progress = ((i + 1) / video_length) * 100
print(f"PROGRESS:{progress:.2f}%")
# Process remaining frames
if batch_frames:
kpts_batch, scores_batch = process_batch(batch_frames, human_model, pose_model,
det_dim, num_person, args.thred_score,
use_fp16, device, people_sort)
for kpts, scores in zip(kpts_batch, scores_batch):
kpts_result[frame_idx:frame_idx + 1] = kpts[None, :num_person]
scores_result[frame_idx:frame_idx + 1] = scores[None, :num_person]
frame_idx += 1
progress = (frame_idx / video_length) * 100
print(f"PROGRESS:{progress:.2f}%")
except Exception as e:
loader_thread.join()
raise
finally:
loader_thread.join()
cap.release()
if device.type == 'cuda':
torch.cuda.empty_cache() # Free GPU memory
if gen_output and kpts_result.any():
keypoints = kpts_result[:frame_idx].transpose(1, 0, 2, 3)
scores = scores_result[:frame_idx].transpose(1, 0, 2)
return keypoints, scores
return None, None
def gen_img_kpts(image, human_model, pose_model, human_sort, det_dim=416, num_person=2):
args = parse_args()
reset_config(args)
thred_score = args.thred_score
bboxs, bbox_scores = yolo_det(image, human_model, reso=det_dim, confidence=thred_score)
if bboxs is None or not bboxs.any():
return None, None, None
people_track = human_sort.update(bboxs)
if people_track.shape[0] == 1:
bboxs_track = people_track[-1].reshape(1, 5)
else:
people_track_ = people_track[-num_person:].reshape(num_person, 5)
bboxs_track = people_track_[::-1]
with torch.no_grad():
inputs, origin_img, center, scale = PreProcess(image, bboxs_track, cfg, num_person)
inputs = inputs[:, [2, 1, 0]]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
use_fp16 = device.type == 'cuda' and torch.cuda.get_device_capability()[0] >= 7
if device.type == 'cuda':
inputs = inputs.cuda()
if use_fp16:
inputs = inputs.half() # Match model precision
output = pose_model(inputs)
preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))
kpts = np.zeros((num_person, 17, 2), dtype=np.float32)
scores = np.zeros((num_person, 17, 1), dtype=np.float32)
for i, kpt in enumerate(preds):
kpts[i] = kpt
for i, score in enumerate(maxvals):
scores[i] = score
human_indexes = [bboxs_track[i, -1] for i in range(len(bboxs_track))]
return kpts, scores, human_indexes
def generate_ntu_kpts_json(video_path, kpts_file):
args = parse_args()
reset_config(args)
human_model = yolo_model()
pose_model = model_load(cfg)
people_sort = Sort()
with torch.no_grad():
cap = cv2.VideoCapture(video_path)
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
kpts_info = dict()
data = []
for i in tqdm(range(video_length), unit="%", ncols=100):
frame_info = {'frame_index': i + 1}
ret, frame = cap.read()
if not ret:
continue
try:
bboxs, scores = yolo_det(frame, human_model, confidence=args.thred_score)
if bboxs is None or not bboxs.any():
continue
people_track = people_sort.update(bboxs)
if people_track.shape[0] == 1:
people_track_ = people_track[-1, :-1].reshape(1, 4)
elif people_track.shape[0] >= 2:
people_track_ = people_track[-2:, :-1].reshape(2, 4)
people_track_ = people_track_[::-1]
else:
skeleton = {'skeleton': [{'pose': [], 'score': [], 'bbox': []}]}
frame_info.update(skeleton)
data.append(frame_info)
continue
track_bboxs = []
for bbox in people_track_:
bbox = [round(i, 3) for i in list(bbox)]
track_bboxs.append(bbox)
except Exception:
continue
inputs, origin_img, center, scale = PreProcess(frame, track_bboxs, cfg, args.num_person)
inputs = inputs[:, [2, 1, 0]]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
use_fp16 = device.type == 'cuda' and torch.cuda.get_device_capability()[0] >= 7
if device.type == 'cuda':
inputs = inputs.cuda()
if use_fp16:
inputs = inputs.half() # Match model precision
output = pose_model(inputs)
preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))
skeleton = []
for num, bbox in enumerate(track_bboxs):
pose = preds[num].tolist()
score = maxvals[num].tolist()
pose = round_list(pose)
score = round_list(score)
one_skeleton = {'pose': pose, 'score': score, 'bbox': bbox}
skeleton.append(one_skeleton)
frame_info.update({'skeleton': skeleton})
data.append(frame_info)
kpts_info.update({'data': data})
with open(kpts_file, 'w') as fw:
json.dump(kpts_info, fw)
cap.release()
def round_list(input_list, decimals=3):
dim = len(input_list)
for i in range(dim):
for j in range(len(input_list[i])):
input_list[i][j] = round(input_list[i][j], decimals)
return input_list
if __name__ == "__main__":
args = parse_args()
video_path = args.video
if args.animation:
gen_video_kpts(video_path, det_dim=args.det_dim, num_person=args.num_person,
gen_output=False, animation=True)
else:
keypoints, scores = gen_video_kpts(video_path, det_dim=416, num_person=1, gen_output=True, batch_size=8) # Increased batch_size to 8
if keypoints is not None:
output_file = "output.npz"
np.savez(output_file, keypoints=keypoints, scores=scores) |