Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import subprocess | |
| import sys | |
| import os | |
| import time | |
| import shutil | |
| import tempfile | |
| import threading | |
| import queue | |
| from datetime import datetime | |
| from pathlib import Path | |
| def run_command(command, working_dir, progress_bar, progress_text, step_start_progress, step_weight, show_progress=True): | |
| try: | |
| env = os.environ.copy() | |
| env["PYTHONUNBUFFERED"] = "1" | |
| process = subprocess.Popen( | |
| command, | |
| cwd=working_dir, | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| text=True, | |
| bufsize=1, | |
| universal_newlines=True, | |
| env=env | |
| ) | |
| stdout_queue = queue.Queue() | |
| stderr_queue = queue.Queue() | |
| def read_output(pipe, q, source): | |
| for line in iter(pipe.readline, ''): | |
| q.put((source, line)) | |
| pipe.close() | |
| stdout_thread = threading.Thread(target=read_output, args=(process.stdout, stdout_queue, 'stdout')) | |
| stderr_thread = threading.Thread(target=read_output, args=(process.stderr, stderr_queue, 'stderr')) | |
| stdout_thread.daemon = True | |
| stderr_thread.daemon = True | |
| stdout_thread.start() | |
| stderr_thread.start() | |
| total_progress = step_start_progress | |
| stderr_lines = [] | |
| while process.poll() is None or not (stdout_queue.empty() and stderr_queue.empty()): | |
| try: | |
| source, line = next((q.get_nowait() for q in [stdout_queue, stderr_queue] if not q.empty()), (None, None)) | |
| if line: | |
| if source == 'stdout': | |
| if show_progress and line.startswith("PROGRESS:"): | |
| try: | |
| progress_str = line.strip().split("PROGRESS:")[1].replace("%", "") # Remove '%' | |
| progress = float(progress_str) # Convert to float after removing '%' # Debug output | |
| if Path(command[1]).name == 'gen_skes.py': | |
| if progress <= 100.0: # 2D Keypoint generation (0-100% maps to 0-60%) | |
| adjusted_progress = step_start_progress + (progress / 100.0 * 0.6) | |
| else: # 3D Pose generation (100-200% maps to 60-80%) | |
| adjusted_progress = step_start_progress + 0.6 + ((progress - 100.0) / 100.0 * 0.2) | |
| total_progress = min(adjusted_progress, step_start_progress + step_weight) | |
| else: # For conver_bvh.py or others with 0-100% progress | |
| adjusted_progress = step_start_progress + (progress / 100.0 * step_weight) | |
| total_progress = min(adjusted_progress, step_start_progress + step_weight) | |
| progress_bar.progress(total_progress) | |
| progress_text.text(f"Progress: {int(total_progress * 100)}%") | |
| except ValueError as e: | |
| print(f"DEBUG: Error parsing progress: {e}") | |
| pass | |
| elif source == 'stderr': | |
| stderr_lines.append(line.strip()) | |
| except queue.Empty: | |
| time.sleep(0.01) | |
| stdout_thread.join() | |
| stderr_thread.join() | |
| if process.returncode != 0: | |
| stderr_output = '\n'.join(stderr_lines) | |
| st.error(f"Error in {Path(command[1]).name}:\n{stderr_output}") | |
| return False | |
| if show_progress: | |
| progress_bar.progress(step_start_progress + step_weight) | |
| progress_text.text(f"Progress: {int((step_start_progress + step_weight) * 100)}%") | |
| return True | |
| except Exception as e: | |
| st.error(f"Exception in {Path(command[1]).name}: {str(e)}") | |
| return False | |
| def cleanup_output_folder(output_dir, delay=1800): | |
| time.sleep(delay) | |
| if os.path.exists(output_dir): | |
| shutil.rmtree(output_dir, ignore_errors=True) | |
| print(f"Deleted temporary output folder after timeout: {output_dir}") | |
| def process_video(video_file): | |
| base_dir = Path(__file__).parent.resolve() | |
| gen_skes_path = base_dir / "VideoToNPZ" / "gen_skes.py" | |
| convert_obj_path = base_dir / "convertNPZtoBVH" / "conver_obj.py" | |
| convert_bvh_path = base_dir / "convertNPZtoBVH" / "conver_bvh.py" | |
| for script_path in [gen_skes_path, convert_obj_path, convert_bvh_path]: | |
| if not script_path.exists(): | |
| st.error(f"Required script not found: {script_path}") | |
| return None | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| video_path = Path(tmp_dir) / "input_video.mp4" | |
| with open(video_path, "wb") as f: | |
| f.write(video_file.read()) | |
| if not video_path.exists(): | |
| st.error(f"Video file not found at: {video_path}") | |
| return None | |
| timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
| output_dir = base_dir / f"outputs_{timestamp}" | |
| output_dir.mkdir(exist_ok=True) | |
| if not os.access(output_dir, os.W_OK): | |
| st.error(f"Cannot write to output directory: {output_dir}") | |
| return None | |
| default_output_dir = base_dir / "outputs" | |
| pipeline_steps = [ | |
| {"command": [sys.executable, str(gen_skes_path), "-v", str(video_path)], "working_dir": gen_skes_path.parent, "weight": 0.8, "show_progress": True}, | |
| {"command": [sys.executable, str(convert_obj_path), "--output-dir", str(output_dir)], "working_dir": convert_obj_path.parent, "weight": 0.0, "show_progress": False}, | |
| {"command": [sys.executable, str(convert_bvh_path), "--output-dir", str(output_dir)], "working_dir": convert_bvh_path.parent, "weight": 0.2, "show_progress": True} | |
| ] | |
| progress_bar = st.progress(0.0) | |
| progress_text = st.empty() | |
| total_progress = 0.0 | |
| for i, step in enumerate(pipeline_steps): | |
| success = run_command( | |
| step["command"], | |
| step["working_dir"], | |
| progress_bar, | |
| progress_text, | |
| total_progress, | |
| step["weight"], | |
| show_progress=step["show_progress"] | |
| ) | |
| if not success: | |
| st.error(f"Failed at step: {' '.join(map(str, step['command']))}") | |
| if default_output_dir.exists(): | |
| shutil.rmtree(default_output_dir, ignore_errors=True) | |
| return None | |
| if i == 0 and default_output_dir.exists(): | |
| npz_dir = default_output_dir / "npz" | |
| if npz_dir.exists(): | |
| target_npz_dir = output_dir / "npz" | |
| shutil.move(str(npz_dir), str(target_npz_dir)) | |
| if default_output_dir.exists(): | |
| shutil.rmtree(default_output_dir, ignore_errors=True) | |
| total_progress += step["weight"] | |
| if step["show_progress"]: | |
| progress_bar.progress(min(total_progress, 1.0)) | |
| progress_text.text(f"Progress: {int(total_progress * 100)}%") | |
| bvh_output_dir = output_dir / "bvh" | |
| bvh_file = bvh_output_dir / "output.bvh" | |
| if bvh_file.exists(): | |
| cleanup_thread = threading.Thread(target=cleanup_output_folder, args=(output_dir,)) | |
| cleanup_thread.daemon = True | |
| cleanup_thread.start() | |
| return { | |
| 'bvh_file': bvh_file, | |
| 'output_dir': output_dir | |
| } | |
| else: | |
| st.error(f"Failed to generate BVH file at: {bvh_file}") | |
| if default_output_dir.exists(): | |
| shutil.rmtree(default_output_dir, ignore_errors=True) | |
| return None | |
| def cleanup_immediate(output_dir): | |
| if output_dir and os.path.exists(output_dir): | |
| shutil.rmtree(output_dir, ignore_errors=True) | |
| st.success("Output folder cleaned up successfully.") | |
| else: | |
| st.warning("No output folder to clean up.") | |
| def main(): | |
| st.set_page_config( | |
| page_title="Motion Capture Studio | Video to BVH Converter", | |
| page_icon="π¬", | |
| layout="wide", | |
| initial_sidebar_state="collapsed" | |
| ) | |
| st.markdown(""" | |
| <style> | |
| :root { | |
| --bg-color: #1a1a1a; | |
| --card-bg: #252525; | |
| --primary-color: #bb86fc; | |
| --secondary-color: #03dac6; | |
| --error-color: #cf6679; | |
| --text-color: #e0e0e0; | |
| --text-secondary: #a0a0a0; | |
| --border-color: #404040; | |
| --shadow-color: rgba(0, 0, 0, 0.5); | |
| } | |
| .stApp { | |
| background-color: var(--bg-color); | |
| font-family: 'Arial', sans-serif; | |
| } | |
| h1, h2, h3, h4, h5, h6, p, li, div { | |
| color: var(--text-color) !important; | |
| } | |
| .card { | |
| background-color: var(--card-bg); | |
| border-radius: 20px; | |
| padding: 2rem; | |
| margin: 1rem auto; | |
| border: 1px solid var(--border-color); | |
| box-shadow: 0 8px 30px var(--shadow-color); | |
| max-width: 1200px; | |
| } | |
| .main-title { | |
| font-size: 3.5rem; | |
| font-weight: 900; | |
| background: linear-gradient(135deg, var(--primary-color), var(--secondary-color)); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| text-align: center; | |
| margin: 1.5rem 0 0.5rem; | |
| text-shadow: 0 2px 10px rgba(187, 134, 252, 0.3); | |
| } | |
| .subtitle { | |
| font-size: 1.3rem; | |
| color: var(--text-secondary); | |
| text-align: center; | |
| margin-bottom: 2.5rem; | |
| font-weight: 300; | |
| letter-spacing: 0.5px; | |
| } | |
| .section-title { | |
| font-size: 1.5rem; | |
| font-weight: 700; | |
| color: var(--primary-color) !important; | |
| margin-bottom: 1.2rem; | |
| text-transform: uppercase; | |
| letter-spacing: 1px; | |
| } | |
| .stButton > button { | |
| background: linear-gradient(135deg, var(--primary-color), #9b59f5); | |
| color: #fff !important; | |
| border-radius: 12px; | |
| padding: 0.8rem 2.5rem; | |
| font-weight: 600; | |
| font-size: 1.2rem; | |
| border: none; | |
| transition: all 0.3s ease; | |
| width: 100%; | |
| box-shadow: 0 4px 15px rgba(187, 134, 252, 0.3); | |
| } | |
| .stButton > button:hover { | |
| transform: translateY(-3px); | |
| box-shadow: 0 6px 20px rgba(187, 134, 252, 0.5); | |
| background: linear-gradient(135deg, #9b59f5, var(--primary-color)); | |
| } | |
| .stDownloadButton > button { | |
| background: linear-gradient(135deg, var(--secondary-color), #02b3a3); | |
| color: #fff !important; | |
| border-radius: 12px; | |
| padding: 0.8rem 2.5rem; | |
| font-weight: 600; | |
| font-size: 1.2rem; | |
| border: none; | |
| transition: all 0.3s ease; | |
| width: 100%; | |
| box-shadow: 0 4px 15px rgba(3, 218, 198, 0.3); | |
| } | |
| .stDownloadButton > button:hover { | |
| transform: translateY(-3px); | |
| box-shadow: 0 6px 20px rgba(3, 218, 198, 0.5); | |
| background: linear-gradient(135deg, #02b3a3, var(--secondary-color)); | |
| } | |
| .upload-container { | |
| border: 2px dashed var(--border-color); | |
| border-radius: 15px; | |
| padding: 2.5rem; | |
| text-align: center; | |
| background-color: rgba(255, 255, 255, 0.05); | |
| transition: all 0.3s ease; | |
| } | |
| .upload-container:hover { | |
| border-color: var(--primary-color); | |
| box-shadow: 0 0 20px rgba(187, 134, 252, 0.2); | |
| } | |
| .video-container { | |
| border-radius: 15px; | |
| overflow: hidden; | |
| box-shadow: 0 6px 25px var(--shadow-color); | |
| margin: 1rem 0; | |
| border: 1px solid var(--border-color); | |
| background-color: #000; | |
| } | |
| .status-indicator { | |
| padding: 1rem; | |
| border-radius: 12px; | |
| margin: 0.8rem 0; | |
| display: flex; | |
| align-items: center; | |
| gap: 0.5rem; | |
| font-size: 1.1rem; | |
| } | |
| .status-indicator.info { | |
| background-color: rgba(187, 134, 252, 0.1); | |
| border-left: 5px solid var(--primary-color); | |
| } | |
| .status-indicator.success { | |
| background-color: rgba(3, 218, 198, 0.1); | |
| border-left: 5px solid var(--secondary-color); | |
| } | |
| .control-section { | |
| text-align: center; | |
| margin: 2rem 0; | |
| padding: 1rem; | |
| background-color: rgba(255, 255, 255, 0.03); | |
| border-radius: 12px; | |
| border: 1px solid var(--border-color); | |
| } | |
| .stProgress { | |
| width: 100%; | |
| height: 12px; | |
| border-radius: 6px; | |
| background-color: #333; | |
| margin: 1rem 0; | |
| } | |
| .stProgress > div > div { | |
| background: linear-gradient(135deg, var(--primary-color), var(--secondary-color)); | |
| border-radius: 6px; | |
| } | |
| .progress-text { | |
| font-weight: 600; | |
| padding: 0.5rem 1rem; | |
| background: linear-gradient(135deg, var(--primary-color), var(--secondary-color)); | |
| color: #fff !important; | |
| border-radius: 20px; | |
| box-shadow: 0 2px 10px rgba(187, 134, 252, 0.3); | |
| display: inline-block; | |
| } | |
| .separator { | |
| height: 2px; | |
| background: linear-gradient(90deg, transparent, var(--border-color), transparent); | |
| margin: 2.5rem 0; | |
| } | |
| .footer { | |
| text-align: center; | |
| padding: 2.5rem 0 1.5rem; | |
| font-size: 0.95rem; | |
| color: var(--text-secondary); | |
| border-top: 1px solid var(--border-color); | |
| letter-spacing: 0.5px; | |
| } | |
| .pipeline-step { | |
| display: flex; | |
| align-items: center; | |
| background-color: rgba(255, 255, 255, 0.05); | |
| padding: 1rem; | |
| border-radius: 12px; | |
| margin-bottom: 1rem; | |
| border: 1px solid var(--border-color); | |
| transition: all 0.3s ease; | |
| } | |
| .pipeline-step:hover { | |
| background-color: rgba(255, 255, 255, 0.08); | |
| border-color: var(--primary-color); | |
| box-shadow: 0 4px 15px rgba(187, 134, 252, 0.1); | |
| } | |
| .step-number { | |
| background: linear-gradient(135deg, var(--primary-color), var(--secondary-color)); | |
| color: #fff; | |
| border-radius: 50%; | |
| width: 40px; | |
| height: 40px; | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| margin-right: 1.2rem; | |
| font-weight: 600; | |
| font-size: 1.2rem; | |
| box-shadow: 0 2px 10px rgba(187, 134, 252, 0.3); | |
| } | |
| .step-title { | |
| font-weight: 600; | |
| font-size: 1.1rem; | |
| margin-bottom: 0.3rem; | |
| } | |
| .step-description { | |
| color: var(--text-secondary); | |
| font-size: 0.95rem; | |
| } | |
| @keyframes pulse { | |
| 0% { transform: scale(1); } | |
| 50% { transform: scale(1.03); } | |
| 100% { transform: scale(1); } | |
| } | |
| .animate-pulse { | |
| animation: pulse 2s infinite; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Header | |
| st.markdown('<h1 class="main-title animate-pulse">Motion Capture Studio</h1>', unsafe_allow_html=True) | |
| st.markdown('<p class="subtitle">Transform your videos into professional BVH motion files with cutting-edge AI</p>', unsafe_allow_html=True) | |
| # Main content | |
| st.markdown('<div class="card">', unsafe_allow_html=True) | |
| col1, col2 = st.columns([1, 1], gap="medium") | |
| with col1: | |
| st.markdown('<h3 class="section-title">Upload Your Video</h3>', unsafe_allow_html=True) | |
| st.markdown('<div class="upload-container">', unsafe_allow_html=True) | |
| uploaded_file = st.file_uploader( | |
| "Drop your video here or click to browse", | |
| type=['mp4', 'avi', 'mov'], | |
| help="For best results, use clear full-body motion videos with good lighting", | |
| key="file_uploader" | |
| ) | |
| if uploaded_file: | |
| st.session_state['uploaded_file'] = uploaded_file | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| if not st.session_state.get('uploaded_file'): | |
| st.markdown(""" | |
| <div class="status-indicator info"> | |
| π‘ <strong>Pro Tip:</strong> Use MP4, AVI, or MOV files with clear, well-lit full-body motion | |
| </div> | |
| """, unsafe_allow_html=True) | |
| with col2: | |
| st.markdown('<h3 class="section-title">Video Preview</h3>', unsafe_allow_html=True) | |
| if uploaded_file := st.session_state.get('uploaded_file', None): | |
| st.markdown('<div class="video-container">', unsafe_allow_html=True) | |
| st.video(uploaded_file) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| else: | |
| st.markdown(""" | |
| <div style="height: 250px; display: flex; align-items: center; justify-content: center; | |
| border: 2px dashed var(--border-color); border-radius: 15px; background-color: rgba(255, 255, 255, 0.05);"> | |
| <span style="color: var(--text-secondary); font-size: 1.2rem;">Your video preview will appear here</span> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Control Section (Button and Progress Bar) | |
| if st.session_state.get('uploaded_file'): | |
| st.markdown('<div class="control-section">', unsafe_allow_html=True) | |
| if st.button("β‘ Start Motion Capture", key="convert_btn"): | |
| with st.spinner("Processing your video..."): | |
| progress_bar = st.progress(0.0) | |
| progress_text = st.empty() | |
| st.markdown('<div class="status-indicator info">π Analyzing motion patterns...</div>', unsafe_allow_html=True) | |
| result = process_video(st.session_state['uploaded_file']) | |
| if result: | |
| st.markdown('<div class="status-indicator success">β Motion capture complete!</div>', unsafe_allow_html=True) | |
| with open(result['bvh_file'], "rb") as f: | |
| st.download_button( | |
| label="π₯ Download BVH File", | |
| data=f, | |
| file_name="motion_capture.bvh", | |
| mime="application/octet-stream", | |
| on_click=cleanup_immediate, | |
| args=(result['output_dir'],), | |
| key="download_btn" | |
| ) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Pipeline Info | |
| st.markdown('<div class="separator"></div>', unsafe_allow_html=True) | |
| st.markdown('<h3 class="section-title">Processing Pipeline</h3>', unsafe_allow_html=True) | |
| st.markdown(""" | |
| <div class="pipeline-step"> | |
| <div class="step-number">1</div> | |
| <div> | |
| <div class="step-title">Pose Estimation</div> | |
| <div class="step-description">AI detects and tracks human movements frame-by-frame</div> | |
| </div> | |
| </div> | |
| <div class="pipeline-step"> | |
| <div class="step-number">2</div> | |
| <div> | |
| <div class="step-title">3D Conversion</div> | |
| <div class="step-description">Converts 2D poses into 3D spatial data</div> | |
| </div> | |
| </div> | |
| <div class="pipeline-step"> | |
| <div class="step-number">3</div> | |
| <div> | |
| <div class="step-title">BVH Generation</div> | |
| <div class="step-description">Formats motion data into industry-standard BVH files</div> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Footer | |
| st.markdown(""" | |
| <div class="footer"> | |
| Β© 2025 Motion Capture Studio | Powered by Streamlit & Advanced AI Technology | |
| </div> | |
| """, unsafe_allow_html=True) | |
| if __name__ == "__main__": | |
| main() |