Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,6 +22,7 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
|
| 22 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
|
|
|
| 25 |
|
| 26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 27 |
|
|
@@ -47,6 +48,7 @@ def generate(
|
|
| 47 |
guidance_scale_refiner: float = 5.0,
|
| 48 |
num_inference_steps_base: int = 25,
|
| 49 |
num_inference_steps_refiner: int = 25,
|
|
|
|
| 50 |
apply_refiner: bool = False,
|
| 51 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
| 52 |
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
|
|
@@ -54,6 +56,9 @@ def generate(
|
|
| 54 |
) -> PIL.Image.Image:
|
| 55 |
if torch.cuda.is_available():
|
| 56 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
if ENABLE_CPU_OFFLOAD:
|
| 59 |
pipe.enable_model_cpu_offload()
|
|
@@ -185,6 +190,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 185 |
step=32,
|
| 186 |
value=1024,
|
| 187 |
)
|
|
|
|
| 188 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
| 189 |
with gr.Row():
|
| 190 |
guidance_scale_base = gr.Slider(
|
|
@@ -246,6 +252,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 246 |
queue=False,
|
| 247 |
api_name=False,
|
| 248 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
apply_refiner.change(
|
| 250 |
fn=lambda x: gr.update(visible=x),
|
| 251 |
inputs=apply_refiner,
|
|
@@ -284,6 +297,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 284 |
guidance_scale_refiner,
|
| 285 |
num_inference_steps_base,
|
| 286 |
num_inference_steps_refiner,
|
|
|
|
| 287 |
apply_refiner,
|
| 288 |
model,
|
| 289 |
vaecall,
|
|
|
|
| 22 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
| 25 |
+
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
| 26 |
|
| 27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
|
|
|
|
| 48 |
guidance_scale_refiner: float = 5.0,
|
| 49 |
num_inference_steps_base: int = 25,
|
| 50 |
num_inference_steps_refiner: int = 25,
|
| 51 |
+
use_lora: bool = False,
|
| 52 |
apply_refiner: bool = False,
|
| 53 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
| 54 |
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
|
|
|
|
| 56 |
) -> PIL.Image.Image:
|
| 57 |
if torch.cuda.is_available():
|
| 58 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
| 59 |
+
|
| 60 |
+
if use_lora:
|
| 61 |
+
pipe.load_lora_weights(lora)
|
| 62 |
|
| 63 |
if ENABLE_CPU_OFFLOAD:
|
| 64 |
pipe.enable_model_cpu_offload()
|
|
|
|
| 190 |
step=32,
|
| 191 |
value=1024,
|
| 192 |
)
|
| 193 |
+
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
| 194 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
| 195 |
with gr.Row():
|
| 196 |
guidance_scale_base = gr.Slider(
|
|
|
|
| 252 |
queue=False,
|
| 253 |
api_name=False,
|
| 254 |
)
|
| 255 |
+
use_lora.change(
|
| 256 |
+
fn=lambda x: gr.update(visible=x),
|
| 257 |
+
inputs=use_lora,
|
| 258 |
+
outputs=lora,
|
| 259 |
+
queue=False,
|
| 260 |
+
api_name=False,
|
| 261 |
+
)
|
| 262 |
apply_refiner.change(
|
| 263 |
fn=lambda x: gr.update(visible=x),
|
| 264 |
inputs=apply_refiner,
|
|
|
|
| 297 |
guidance_scale_refiner,
|
| 298 |
num_inference_steps_base,
|
| 299 |
num_inference_steps_refiner,
|
| 300 |
+
use_lora,
|
| 301 |
apply_refiner,
|
| 302 |
model,
|
| 303 |
vaecall,
|