Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,6 +23,7 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
| 23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
| 25 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
|
|
|
| 26 |
|
| 27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
|
|
@@ -48,6 +49,7 @@ def generate(
|
|
| 48 |
guidance_scale_refiner: float = 5.0,
|
| 49 |
num_inference_steps_base: int = 25,
|
| 50 |
num_inference_steps_refiner: int = 25,
|
|
|
|
| 51 |
use_lora: bool = False,
|
| 52 |
apply_refiner: bool = False,
|
| 53 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
|
@@ -55,10 +57,16 @@ def generate(
|
|
| 55 |
lora = 'amazonaws-la/juliette',
|
| 56 |
) -> PIL.Image.Image:
|
| 57 |
if torch.cuda.is_available():
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
if use_lora:
|
| 63 |
pipe.load_lora_weights(lora)
|
| 64 |
pipe.fuse_lora(lora_scale=0.7)
|
|
@@ -193,6 +201,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 193 |
step=32,
|
| 194 |
value=1024,
|
| 195 |
)
|
|
|
|
| 196 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
| 197 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
| 198 |
with gr.Row():
|
|
@@ -255,6 +264,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 255 |
queue=False,
|
| 256 |
api_name=False,
|
| 257 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
use_lora.change(
|
| 259 |
fn=lambda x: gr.update(visible=x),
|
| 260 |
inputs=use_lora,
|
|
@@ -300,6 +316,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 300 |
guidance_scale_refiner,
|
| 301 |
num_inference_steps_base,
|
| 302 |
num_inference_steps_refiner,
|
|
|
|
| 303 |
use_lora,
|
| 304 |
apply_refiner,
|
| 305 |
model,
|
|
|
|
| 23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
| 25 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
| 26 |
+
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
| 27 |
|
| 28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
|
|
|
| 49 |
guidance_scale_refiner: float = 5.0,
|
| 50 |
num_inference_steps_base: int = 25,
|
| 51 |
num_inference_steps_refiner: int = 25,
|
| 52 |
+
use_vae: bool = False,
|
| 53 |
use_lora: bool = False,
|
| 54 |
apply_refiner: bool = False,
|
| 55 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
|
|
|
| 57 |
lora = 'amazonaws-la/juliette',
|
| 58 |
) -> PIL.Image.Image:
|
| 59 |
if torch.cuda.is_available():
|
| 60 |
+
|
| 61 |
+
if not use_vae:
|
| 62 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
| 63 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 64 |
|
| 65 |
+
if use_vae:
|
| 66 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
| 67 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
| 68 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 69 |
+
|
| 70 |
if use_lora:
|
| 71 |
pipe.load_lora_weights(lora)
|
| 72 |
pipe.fuse_lora(lora_scale=0.7)
|
|
|
|
| 201 |
step=32,
|
| 202 |
value=1024,
|
| 203 |
)
|
| 204 |
+
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
| 205 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
| 206 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
| 207 |
with gr.Row():
|
|
|
|
| 264 |
queue=False,
|
| 265 |
api_name=False,
|
| 266 |
)
|
| 267 |
+
use_vae.change(
|
| 268 |
+
fn=lambda x: gr.update(visible=x),
|
| 269 |
+
inputs=use_vae,
|
| 270 |
+
outputs=vaecall,
|
| 271 |
+
queue=False,
|
| 272 |
+
api_name=False,
|
| 273 |
+
)
|
| 274 |
use_lora.change(
|
| 275 |
fn=lambda x: gr.update(visible=x),
|
| 276 |
inputs=use_lora,
|
|
|
|
| 316 |
guidance_scale_refiner,
|
| 317 |
num_inference_steps_base,
|
| 318 |
num_inference_steps_refiner,
|
| 319 |
+
use_vae,
|
| 320 |
use_lora,
|
| 321 |
apply_refiner,
|
| 322 |
model,
|