Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,8 +9,10 @@ import gradio as gr
|
|
| 9 |
import numpy as np
|
| 10 |
import PIL.Image
|
| 11 |
import spaces
|
|
|
|
| 12 |
import torch
|
| 13 |
-
from
|
|
|
|
| 14 |
|
| 15 |
DESCRIPTION = "# SDXL"
|
| 16 |
if not torch.cuda.is_available():
|
|
@@ -55,12 +57,13 @@ def generate(
|
|
| 55 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
| 56 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
| 57 |
lora = 'amazonaws-la/juliette',
|
|
|
|
| 58 |
lora_scale: float = 0.7,
|
| 59 |
) -> PIL.Image.Image:
|
| 60 |
if torch.cuda.is_available():
|
| 61 |
|
| 62 |
if not use_vae:
|
| 63 |
-
pipe =
|
| 64 |
|
| 65 |
if use_vae:
|
| 66 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
|
@@ -69,7 +72,11 @@ def generate(
|
|
| 69 |
if use_lora:
|
| 70 |
pipe.load_lora_weights(lora)
|
| 71 |
pipe.fuse_lora(lora_scale=0.7)
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
if ENABLE_CPU_OFFLOAD:
|
| 74 |
pipe.enable_model_cpu_offload()
|
| 75 |
|
|
@@ -99,6 +106,7 @@ def generate(
|
|
| 99 |
guidance_scale=guidance_scale_base,
|
| 100 |
num_inference_steps=num_inference_steps_base,
|
| 101 |
generator=generator,
|
|
|
|
| 102 |
output_type="pil",
|
| 103 |
).images[0]
|
| 104 |
else:
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import PIL.Image
|
| 11 |
import spaces
|
| 12 |
+
import requests
|
| 13 |
import torch
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline
|
| 16 |
|
| 17 |
DESCRIPTION = "# SDXL"
|
| 18 |
if not torch.cuda.is_available():
|
|
|
|
| 57 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
| 58 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
| 59 |
lora = 'amazonaws-la/juliette',
|
| 60 |
+
url = 'https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg'
|
| 61 |
lora_scale: float = 0.7,
|
| 62 |
) -> PIL.Image.Image:
|
| 63 |
if torch.cuda.is_available():
|
| 64 |
|
| 65 |
if not use_vae:
|
| 66 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
| 67 |
|
| 68 |
if use_vae:
|
| 69 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
|
|
|
| 72 |
if use_lora:
|
| 73 |
pipe.load_lora_weights(lora)
|
| 74 |
pipe.fuse_lora(lora_scale=0.7)
|
| 75 |
+
|
| 76 |
+
response = requests.get(url)
|
| 77 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 78 |
+
init_image = init_image.resize((1024, 1024))
|
| 79 |
+
|
| 80 |
if ENABLE_CPU_OFFLOAD:
|
| 81 |
pipe.enable_model_cpu_offload()
|
| 82 |
|
|
|
|
| 106 |
guidance_scale=guidance_scale_base,
|
| 107 |
num_inference_steps=num_inference_steps_base,
|
| 108 |
generator=generator,
|
| 109 |
+
image=init_image
|
| 110 |
output_type="pil",
|
| 111 |
).images[0]
|
| 112 |
else:
|