Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import insightface | |
| from insightface.app import FaceAnalysis | |
| import datetime | |
| import os | |
| from PIL import Image | |
| def faceswapper(user_image, result_image, username="test"): | |
| output_folder = 'outputs' | |
| # Convert PIL images to NumPy arrays for processing | |
| guest_img = np.array(user_image) | |
| result_img = np.array(result_image) | |
| # Convert RGB (PIL) to BGR (OpenCV) | |
| guest_img = guest_img[:, :, ::-1] | |
| result_img = result_img[:, :, ::-1] | |
| # Initialize the FaceAnalysis app | |
| app = FaceAnalysis(name='buffalo_l') | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| # Initialize the face swapper model | |
| swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False) | |
| # Detect face in the guest image | |
| guest_faces = app.get(guest_img) | |
| guest_face = guest_faces[0] | |
| # Detect faces in the result image | |
| faces = app.get(result_img) | |
| # Perform face swapping | |
| for face in faces: | |
| result_img = swapper.get(result_img, face, guest_face, paste_back=True) | |
| # Save the result in the specified output folder | |
| if not os.path.exists(output_folder): | |
| os.makedirs(output_folder) | |
| current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
| output_path = os.path.join(output_folder, f'{username}_swapped_face_{current_time}.jpg') | |
| cv2.imwrite(output_path, result_img) | |
| # Convert the final image from BGR to RGB before returning | |
| result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB) | |
| # Convert back to PIL image | |
| result_img_pil = Image.fromarray(result_img) | |
| original_size = result_image.size | |
| result_img_pil = result_img_pil.resize(original_size, Image.Resampling.LANCZOS) | |
| return result_img_pil | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| name = gr.Textbox(label="이름(파일저장용)") | |
| with gr.Row(): | |
| user_image_input = gr.Image(type="pil", label="유저사진(얼굴추출)", width=300, height=300) | |
| result_image_input = gr.Image(type="pil", label="결과물 사진", width=300, height=300) | |
| swap_btn = gr.Button("Swap Faces") | |
| with gr.Column(): | |
| output_image = gr.Image(label="합성 후 사진") | |
| swap_btn.click(fn=faceswapper, inputs=[user_image_input, result_image_input, name], outputs=output_image) | |
| demo.launch(debug=True) |