Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import subprocess
|
|
|
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
|
| 6 |
hf_token = os.environ.get("HF_TOKEN")
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def set_accelerate_default_config():
|
| 10 |
try:
|
|
@@ -13,7 +26,7 @@ def set_accelerate_default_config():
|
|
| 13 |
except subprocess.CalledProcessError as e:
|
| 14 |
print(f"An error occurred: {e}")
|
| 15 |
|
| 16 |
-
def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps):
|
| 17 |
|
| 18 |
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
|
| 19 |
|
|
@@ -47,15 +60,38 @@ def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instan
|
|
| 47 |
try:
|
| 48 |
subprocess.run(command, check=True)
|
| 49 |
print("Training is finished!")
|
|
|
|
|
|
|
| 50 |
except subprocess.CalledProcessError as e:
|
| 51 |
print(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def main(dataset_id,
|
| 54 |
lora_trained_xl_folder,
|
| 55 |
instance_prompt,
|
| 56 |
max_train_steps,
|
| 57 |
-
checkpoint_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
dataset_repo = dataset_id
|
| 60 |
|
| 61 |
# Automatically set local_dir based on the last part of dataset_repo
|
|
@@ -81,12 +117,36 @@ def main(dataset_id,
|
|
| 81 |
gr.Info("Training begins ...")
|
| 82 |
|
| 83 |
instance_data_dir = repo_parts[-1]
|
| 84 |
-
train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps)
|
| 85 |
|
| 86 |
return f"Done, your trained model has been stored in your models library: your_user_name/{lora-trained-xl-folder}"
|
| 87 |
|
| 88 |
with gr.Blocks() as demo:
|
| 89 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
with gr.Row():
|
| 91 |
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded datasets on your HF profile", placeholder="diffusers/dog-example")
|
| 92 |
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
|
|
@@ -95,8 +155,11 @@ with gr.Blocks() as demo:
|
|
| 95 |
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
|
| 96 |
max_train_steps = gr.Number(label="Max Training Steps", value=500)
|
| 97 |
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100)
|
|
|
|
| 98 |
train_button = gr.Button("Train !")
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
train_button.click(
|
| 102 |
fn = main,
|
|
@@ -105,7 +168,8 @@ with gr.Blocks() as demo:
|
|
| 105 |
model_output_folder,
|
| 106 |
instance_prompt,
|
| 107 |
max_train_steps,
|
| 108 |
-
checkpoint_steps
|
|
|
|
| 109 |
],
|
| 110 |
outputs = [status]
|
| 111 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import subprocess
|
| 4 |
+
from subprocess import getoutput
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
hf_token = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
+
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
is_gpu_associated = torch.cuda.is_available()
|
| 13 |
+
if is_gpu_associated:
|
| 14 |
+
gpu_info = getoutput('nvidia-smi')
|
| 15 |
+
if("A10G" in gpu_info):
|
| 16 |
+
which_gpu = "A10G"
|
| 17 |
+
elif("T4" in gpu_info):
|
| 18 |
+
which_gpu = "T4"
|
| 19 |
+
else:
|
| 20 |
+
which_gpu = "CPU"
|
| 21 |
|
| 22 |
def set_accelerate_default_config():
|
| 23 |
try:
|
|
|
|
| 26 |
except subprocess.CalledProcessError as e:
|
| 27 |
print(f"An error occurred: {e}")
|
| 28 |
|
| 29 |
+
def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu):
|
| 30 |
|
| 31 |
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
|
| 32 |
|
|
|
|
| 60 |
try:
|
| 61 |
subprocess.run(command, check=True)
|
| 62 |
print("Training is finished!")
|
| 63 |
+
if remove_gpu:
|
| 64 |
+
swap_hardware(hf_token, "cpu-basic")
|
| 65 |
except subprocess.CalledProcessError as e:
|
| 66 |
print(f"An error occurred: {e}")
|
| 67 |
+
|
| 68 |
+
title="There was an error on during your training"
|
| 69 |
+
description=f'''
|
| 70 |
+
Unfortunately there was an error during training your {model_name} model.
|
| 71 |
+
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl):
|
| 72 |
+
```
|
| 73 |
+
{str(e)}
|
| 74 |
+
```
|
| 75 |
+
'''
|
| 76 |
+
swap_hardware(hf_token, "cpu-basic")
|
| 77 |
+
write_to_community(title,description,hf_token)
|
| 78 |
|
| 79 |
def main(dataset_id,
|
| 80 |
lora_trained_xl_folder,
|
| 81 |
instance_prompt,
|
| 82 |
max_train_steps,
|
| 83 |
+
checkpoint_steps,
|
| 84 |
+
remove_gpu):
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if is_shared_ui:
|
| 88 |
+
raise gr.Error("This Space only works in duplicated instances")
|
| 89 |
|
| 90 |
+
if not is_gpu_associated:
|
| 91 |
+
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
|
| 92 |
+
|
| 93 |
+
gr.Warning("## Training is ongoing ⌛... You can close this tab if you like or just wait. If you did not check the `Remove GPU After training`, you can come back here to try your model and upload it after training. Don't forget to remove the GPU attribution after you are done. ")
|
| 94 |
+
|
| 95 |
dataset_repo = dataset_id
|
| 96 |
|
| 97 |
# Automatically set local_dir based on the last part of dataset_repo
|
|
|
|
| 117 |
gr.Info("Training begins ...")
|
| 118 |
|
| 119 |
instance_data_dir = repo_parts[-1]
|
| 120 |
+
train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu)
|
| 121 |
|
| 122 |
return f"Done, your trained model has been stored in your models library: your_user_name/{lora-trained-xl-folder}"
|
| 123 |
|
| 124 |
with gr.Blocks() as demo:
|
| 125 |
with gr.Column():
|
| 126 |
+
if is_shared_ui:
|
| 127 |
+
top_description = gr.HTML(f'''
|
| 128 |
+
<div class="gr-prose" style="max-width: 80%">
|
| 129 |
+
<h2>Attention - This Space doesn't work in this shared UI</h2>
|
| 130 |
+
<p>For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it! <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
| 131 |
+
<img class="instruction" src="file=duplicate.png">
|
| 132 |
+
<img class="arrow" src="file=arrow.png" />
|
| 133 |
+
</div>
|
| 134 |
+
''')
|
| 135 |
+
else:
|
| 136 |
+
if(is_gpu_associated):
|
| 137 |
+
top_description = gr.HTML(f'''
|
| 138 |
+
<div class="gr-prose" style="max-width: 80%">
|
| 139 |
+
<h2>You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space 🎉</h2>
|
| 140 |
+
<p>You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.</p>
|
| 141 |
+
</div>
|
| 142 |
+
''')
|
| 143 |
+
else:
|
| 144 |
+
top_description = gr.HTML(f'''
|
| 145 |
+
<div class="gr-prose" style="max-width: 80%">
|
| 146 |
+
<h2>You have successfully duplicated the SD-XL Dreambooth LoRa Training Space 🎉</h2>
|
| 147 |
+
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
|
| 148 |
+
</div>
|
| 149 |
+
''')
|
| 150 |
with gr.Row():
|
| 151 |
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded datasets on your HF profile", placeholder="diffusers/dog-example")
|
| 152 |
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
|
|
|
|
| 155 |
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
|
| 156 |
max_train_steps = gr.Number(label="Max Training Steps", value=500)
|
| 157 |
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100)
|
| 158 |
+
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True)
|
| 159 |
train_button = gr.Button("Train !")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
status = gr.Textbox(label="Training status")
|
| 163 |
|
| 164 |
train_button.click(
|
| 165 |
fn = main,
|
|
|
|
| 168 |
model_output_folder,
|
| 169 |
instance_prompt,
|
| 170 |
max_train_steps,
|
| 171 |
+
checkpoint_steps,
|
| 172 |
+
remove_gpu
|
| 173 |
],
|
| 174 |
outputs = [status]
|
| 175 |
)
|