Spaces:
Sleeping
Sleeping
model card template update
Browse files
train_dreambooth_lora_sdxl.py
CHANGED
|
@@ -90,7 +90,7 @@ Last checkpoint saved: {last_checkpoint}
|
|
| 90 |
|
| 91 |
These are LoRA adaption weights for {base_model}.
|
| 92 |
|
| 93 |
-
The weights
|
| 94 |
```
|
| 95 |
{prompt}
|
| 96 |
```
|
|
@@ -157,7 +157,7 @@ datasets:
|
|
| 157 |
model_card = f"""
|
| 158 |
# LoRA DreamBooth - {repo_id}
|
| 159 |
|
| 160 |
-
These are LoRA adaption weights for {base_model}.
|
| 161 |
|
| 162 |
The weights were trained on the concept prompt:
|
| 163 |
```
|
|
@@ -166,6 +166,7 @@ The weights were trained on the concept prompt:
|
|
| 166 |
Use this keyword to trigger your custom model in your prompts.
|
| 167 |
|
| 168 |
LoRA for the text encoder was enabled: {train_text_encoder}.
|
|
|
|
| 169 |
Special VAE used for training: {vae_path}.
|
| 170 |
|
| 171 |
## Usage
|
|
@@ -186,6 +187,8 @@ To just use the base model, you can run:
|
|
| 186 |
import torch
|
| 187 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 188 |
|
|
|
|
|
|
|
| 189 |
vae = AutoencoderKL.from_pretrained('{vae_path}', torch_dtype=torch.float16)
|
| 190 |
|
| 191 |
pipe = DiffusionPipeline.from_pretrained(
|
|
@@ -194,14 +197,26 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 194 |
use_safetensors=True
|
| 195 |
)
|
| 196 |
|
| 197 |
-
pipe.to(
|
| 198 |
|
| 199 |
# This is where you load your trained weights
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
prompt = "A majestic {prompt} jumping from a big stone at night"
|
| 203 |
|
| 204 |
-
image = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
```
|
| 206 |
"""
|
| 207 |
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
|
|
|
| 90 |
|
| 91 |
These are LoRA adaption weights for {base_model}.
|
| 92 |
|
| 93 |
+
The weights is currently trained on the concept prompt:
|
| 94 |
```
|
| 95 |
{prompt}
|
| 96 |
```
|
|
|
|
| 157 |
model_card = f"""
|
| 158 |
# LoRA DreamBooth - {repo_id}
|
| 159 |
|
| 160 |
+
These are LoRA adaption weights for {base_model} trained on @fffiloni's SD-XL trainer.
|
| 161 |
|
| 162 |
The weights were trained on the concept prompt:
|
| 163 |
```
|
|
|
|
| 166 |
Use this keyword to trigger your custom model in your prompts.
|
| 167 |
|
| 168 |
LoRA for the text encoder was enabled: {train_text_encoder}.
|
| 169 |
+
|
| 170 |
Special VAE used for training: {vae_path}.
|
| 171 |
|
| 172 |
## Usage
|
|
|
|
| 187 |
import torch
|
| 188 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 189 |
|
| 190 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 191 |
+
|
| 192 |
vae = AutoencoderKL.from_pretrained('{vae_path}', torch_dtype=torch.float16)
|
| 193 |
|
| 194 |
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
| 197 |
use_safetensors=True
|
| 198 |
)
|
| 199 |
|
| 200 |
+
pipe.to(device)
|
| 201 |
|
| 202 |
# This is where you load your trained weights
|
| 203 |
+
|
| 204 |
+
specific_safetensors = "pytorch_lora_weights.safetensors"
|
| 205 |
+
lora_scale = 0.9
|
| 206 |
+
|
| 207 |
+
pipe.load_lora_weights(
|
| 208 |
+
'{repo_id}',
|
| 209 |
+
weight_name = specific_safetensors,
|
| 210 |
+
# use_auth_token = True
|
| 211 |
+
)
|
| 212 |
|
| 213 |
prompt = "A majestic {prompt} jumping from a big stone at night"
|
| 214 |
|
| 215 |
+
image = pipe(
|
| 216 |
+
prompt=prompt,
|
| 217 |
+
num_inference_steps=50,
|
| 218 |
+
cross_attention_kwargs=\{"scale": lora_scale\}
|
| 219 |
+
).images[0]
|
| 220 |
```
|
| 221 |
"""
|
| 222 |
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|