| ; | |
| Object.defineProperty(exports, '__esModule', { | |
| value: true | |
| }); | |
| exports.default = diffSequence; | |
| /** | |
| * Copyright (c) Meta Platforms, Inc. and affiliates. | |
| * | |
| * This source code is licensed under the MIT license found in the | |
| * LICENSE file in the root directory of this source tree. | |
| * | |
| */ | |
| // This diff-sequences package implements the linear space variation in | |
| // An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers | |
| // Relationship in notation between Myers paper and this package: | |
| // A is a | |
| // N is aLength, aEnd - aStart, and so on | |
| // x is aIndex, aFirst, aLast, and so on | |
| // B is b | |
| // M is bLength, bEnd - bStart, and so on | |
| // y is bIndex, bFirst, bLast, and so on | |
| // Δ = N - M is negative of baDeltaLength = bLength - aLength | |
| // D is d | |
| // k is kF | |
| // k + Δ is kF = kR - baDeltaLength | |
| // V is aIndexesF or aIndexesR (see comment below about Indexes type) | |
| // index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength) | |
| // starting point in forward direction (0, 0) is (-1, -1) | |
| // starting point in reverse direction (N + 1, M + 1) is (aLength, bLength) | |
| // The “edit graph” for sequences a and b corresponds to items: | |
| // in a on the horizontal axis | |
| // in b on the vertical axis | |
| // | |
| // Given a-coordinate of a point in a diagonal, you can compute b-coordinate. | |
| // | |
| // Forward diagonals kF: | |
| // zero diagonal intersects top left corner | |
| // positive diagonals intersect top edge | |
| // negative diagonals insersect left edge | |
| // | |
| // Reverse diagonals kR: | |
| // zero diagonal intersects bottom right corner | |
| // positive diagonals intersect right edge | |
| // negative diagonals intersect bottom edge | |
| // The graph contains a directed acyclic graph of edges: | |
| // horizontal: delete an item from a | |
| // vertical: insert an item from b | |
| // diagonal: common item in a and b | |
| // | |
| // The algorithm solves dual problems in the graph analogy: | |
| // Find longest common subsequence: path with maximum number of diagonal edges | |
| // Find shortest edit script: path with minimum number of non-diagonal edges | |
| // Input callback function compares items at indexes in the sequences. | |
| // Output callback function receives the number of adjacent items | |
| // and starting indexes of each common subsequence. | |
| // Either original functions or wrapped to swap indexes if graph is transposed. | |
| // Indexes in sequence a of last point of forward or reverse paths in graph. | |
| // Myers algorithm indexes by diagonal k which for negative is bad deopt in V8. | |
| // This package indexes by iF and iR which are greater than or equal to zero. | |
| // and also updates the index arrays in place to cut memory in half. | |
| // kF = 2 * iF - d | |
| // kR = d - 2 * iR | |
| // Division of index intervals in sequences a and b at the middle change. | |
| // Invariant: intervals do not have common items at the start or end. | |
| const pkg = 'diff-sequences'; // for error messages | |
| const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8 | |
| // Return the number of common items that follow in forward direction. | |
| // The length of what Myers paper calls a “snake” in a forward path. | |
| const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => { | |
| let nCommon = 0; | |
| while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) { | |
| aIndex += 1; | |
| bIndex += 1; | |
| nCommon += 1; | |
| } | |
| return nCommon; | |
| }; | |
| // Return the number of common items that precede in reverse direction. | |
| // The length of what Myers paper calls a “snake” in a reverse path. | |
| const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => { | |
| let nCommon = 0; | |
| while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) { | |
| aIndex -= 1; | |
| bIndex -= 1; | |
| nCommon += 1; | |
| } | |
| return nCommon; | |
| }; | |
| // A simple function to extend forward paths from (d - 1) to d changes | |
| // when forward and reverse paths cannot yet overlap. | |
| const extendPathsF = ( | |
| d, | |
| aEnd, | |
| bEnd, | |
| bF, | |
| isCommon, | |
| aIndexesF, | |
| iMaxF // return the value because optimization might decrease it | |
| ) => { | |
| // Unroll the first iteration. | |
| let iF = 0; | |
| let kF = -d; // kF = 2 * iF - d | |
| let aFirst = aIndexesF[iF]; // in first iteration always insert | |
| let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration | |
| aIndexesF[iF] += countCommonItemsF( | |
| aFirst + 1, | |
| aEnd, | |
| bF + aFirst - kF + 1, | |
| bEnd, | |
| isCommon | |
| ); | |
| // Optimization: skip diagonals in which paths cannot ever overlap. | |
| const nF = d < iMaxF ? d : iMaxF; | |
| // The diagonals kF are odd when d is odd and even when d is even. | |
| for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) { | |
| // To get first point of path segment, move one change in forward direction | |
| // from last point of previous path segment in an adjacent diagonal. | |
| // In last possible iteration when iF === d and kF === d always delete. | |
| if (iF !== d && aIndexPrev1 < aIndexesF[iF]) { | |
| aFirst = aIndexesF[iF]; // vertical to insert from b | |
| } else { | |
| aFirst = aIndexPrev1 + 1; // horizontal to delete from a | |
| if (aEnd <= aFirst) { | |
| // Optimization: delete moved past right of graph. | |
| return iF - 1; | |
| } | |
| } | |
| // To get last point of path segment, move along diagonal of common items. | |
| aIndexPrev1 = aIndexesF[iF]; | |
| aIndexesF[iF] = | |
| aFirst + | |
| countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon); | |
| } | |
| return iMaxF; | |
| }; | |
| // A simple function to extend reverse paths from (d - 1) to d changes | |
| // when reverse and forward paths cannot yet overlap. | |
| const extendPathsR = ( | |
| d, | |
| aStart, | |
| bStart, | |
| bR, | |
| isCommon, | |
| aIndexesR, | |
| iMaxR // return the value because optimization might decrease it | |
| ) => { | |
| // Unroll the first iteration. | |
| let iR = 0; | |
| let kR = d; // kR = d - 2 * iR | |
| let aFirst = aIndexesR[iR]; // in first iteration always insert | |
| let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration | |
| aIndexesR[iR] -= countCommonItemsR( | |
| aStart, | |
| aFirst - 1, | |
| bStart, | |
| bR + aFirst - kR - 1, | |
| isCommon | |
| ); | |
| // Optimization: skip diagonals in which paths cannot ever overlap. | |
| const nR = d < iMaxR ? d : iMaxR; | |
| // The diagonals kR are odd when d is odd and even when d is even. | |
| for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) { | |
| // To get first point of path segment, move one change in reverse direction | |
| // from last point of previous path segment in an adjacent diagonal. | |
| // In last possible iteration when iR === d and kR === -d always delete. | |
| if (iR !== d && aIndexesR[iR] < aIndexPrev1) { | |
| aFirst = aIndexesR[iR]; // vertical to insert from b | |
| } else { | |
| aFirst = aIndexPrev1 - 1; // horizontal to delete from a | |
| if (aFirst < aStart) { | |
| // Optimization: delete moved past left of graph. | |
| return iR - 1; | |
| } | |
| } | |
| // To get last point of path segment, move along diagonal of common items. | |
| aIndexPrev1 = aIndexesR[iR]; | |
| aIndexesR[iR] = | |
| aFirst - | |
| countCommonItemsR( | |
| aStart, | |
| aFirst - 1, | |
| bStart, | |
| bR + aFirst - kR - 1, | |
| isCommon | |
| ); | |
| } | |
| return iMaxR; | |
| }; | |
| // A complete function to extend forward paths from (d - 1) to d changes. | |
| // Return true if a path overlaps reverse path of (d - 1) changes in its diagonal. | |
| const extendOverlappablePathsF = ( | |
| d, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| iMaxF, | |
| aIndexesR, | |
| iMaxR, | |
| division // update prop values if return true | |
| ) => { | |
| const bF = bStart - aStart; // bIndex = bF + aIndex - kF | |
| const aLength = aEnd - aStart; | |
| const bLength = bEnd - bStart; | |
| const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength | |
| // Range of diagonals in which forward and reverse paths might overlap. | |
| const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR | |
| const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1) | |
| let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration | |
| // Optimization: skip diagonals in which paths cannot ever overlap. | |
| const nF = d < iMaxF ? d : iMaxF; | |
| // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even. | |
| for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) { | |
| // To get first point of path segment, move one change in forward direction | |
| // from last point of previous path segment in an adjacent diagonal. | |
| // In first iteration when iF === 0 and kF === -d always insert. | |
| // In last possible iteration when iF === d and kF === d always delete. | |
| const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]); | |
| const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1; | |
| const aFirst = insert | |
| ? aLastPrev // vertical to insert from b | |
| : aLastPrev + 1; // horizontal to delete from a | |
| // To get last point of path segment, move along diagonal of common items. | |
| const bFirst = bF + aFirst - kF; | |
| const nCommonF = countCommonItemsF( | |
| aFirst + 1, | |
| aEnd, | |
| bFirst + 1, | |
| bEnd, | |
| isCommon | |
| ); | |
| const aLast = aFirst + nCommonF; | |
| aIndexPrev1 = aIndexesF[iF]; | |
| aIndexesF[iF] = aLast; | |
| if (kMinOverlapF <= kF && kF <= kMaxOverlapF) { | |
| // Solve for iR of reverse path with (d - 1) changes in diagonal kF: | |
| // kR = kF + baDeltaLength | |
| // kR = (d - 1) - 2 * iR | |
| const iR = (d - 1 - (kF + baDeltaLength)) / 2; | |
| // If this forward path overlaps the reverse path in this diagonal, | |
| // then this is the middle change of the index intervals. | |
| if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) { | |
| // Unlike the Myers algorithm which finds only the middle “snake” | |
| // this package can find two common subsequences per division. | |
| // Last point of previous path segment is on an adjacent diagonal. | |
| const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); | |
| // Because of invariant that intervals preceding the middle change | |
| // cannot have common items at the end, | |
| // move in reverse direction along a diagonal of common items. | |
| const nCommonR = countCommonItemsR( | |
| aStart, | |
| aLastPrev, | |
| bStart, | |
| bLastPrev, | |
| isCommon | |
| ); | |
| const aIndexPrevFirst = aLastPrev - nCommonR; | |
| const bIndexPrevFirst = bLastPrev - nCommonR; | |
| const aEndPreceding = aIndexPrevFirst + 1; | |
| const bEndPreceding = bIndexPrevFirst + 1; | |
| division.nChangePreceding = d - 1; | |
| if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) { | |
| // Optimization: number of preceding changes in forward direction | |
| // is equal to number of items in preceding interval, | |
| // therefore it cannot contain any common items. | |
| division.aEndPreceding = aStart; | |
| division.bEndPreceding = bStart; | |
| } else { | |
| division.aEndPreceding = aEndPreceding; | |
| division.bEndPreceding = bEndPreceding; | |
| } | |
| division.nCommonPreceding = nCommonR; | |
| if (nCommonR !== 0) { | |
| division.aCommonPreceding = aEndPreceding; | |
| division.bCommonPreceding = bEndPreceding; | |
| } | |
| division.nCommonFollowing = nCommonF; | |
| if (nCommonF !== 0) { | |
| division.aCommonFollowing = aFirst + 1; | |
| division.bCommonFollowing = bFirst + 1; | |
| } | |
| const aStartFollowing = aLast + 1; | |
| const bStartFollowing = bFirst + nCommonF + 1; | |
| division.nChangeFollowing = d - 1; | |
| if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { | |
| // Optimization: number of changes in reverse direction | |
| // is equal to number of items in following interval, | |
| // therefore it cannot contain any common items. | |
| division.aStartFollowing = aEnd; | |
| division.bStartFollowing = bEnd; | |
| } else { | |
| division.aStartFollowing = aStartFollowing; | |
| division.bStartFollowing = bStartFollowing; | |
| } | |
| return true; | |
| } | |
| } | |
| } | |
| return false; | |
| }; | |
| // A complete function to extend reverse paths from (d - 1) to d changes. | |
| // Return true if a path overlaps forward path of d changes in its diagonal. | |
| const extendOverlappablePathsR = ( | |
| d, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| iMaxF, | |
| aIndexesR, | |
| iMaxR, | |
| division // update prop values if return true | |
| ) => { | |
| const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR | |
| const aLength = aEnd - aStart; | |
| const bLength = bEnd - bStart; | |
| const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength | |
| // Range of diagonals in which forward and reverse paths might overlap. | |
| const kMinOverlapR = baDeltaLength - d; // -d <= kF | |
| const kMaxOverlapR = baDeltaLength + d; // kF <= d | |
| let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration | |
| // Optimization: skip diagonals in which paths cannot ever overlap. | |
| const nR = d < iMaxR ? d : iMaxR; | |
| // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even. | |
| for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) { | |
| // To get first point of path segment, move one change in reverse direction | |
| // from last point of previous path segment in an adjacent diagonal. | |
| // In first iteration when iR === 0 and kR === d always insert. | |
| // In last possible iteration when iR === d and kR === -d always delete. | |
| const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1); | |
| const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1; | |
| const aFirst = insert | |
| ? aLastPrev // vertical to insert from b | |
| : aLastPrev - 1; // horizontal to delete from a | |
| // To get last point of path segment, move along diagonal of common items. | |
| const bFirst = bR + aFirst - kR; | |
| const nCommonR = countCommonItemsR( | |
| aStart, | |
| aFirst - 1, | |
| bStart, | |
| bFirst - 1, | |
| isCommon | |
| ); | |
| const aLast = aFirst - nCommonR; | |
| aIndexPrev1 = aIndexesR[iR]; | |
| aIndexesR[iR] = aLast; | |
| if (kMinOverlapR <= kR && kR <= kMaxOverlapR) { | |
| // Solve for iF of forward path with d changes in diagonal kR: | |
| // kF = kR - baDeltaLength | |
| // kF = 2 * iF - d | |
| const iF = (d + (kR - baDeltaLength)) / 2; | |
| // If this reverse path overlaps the forward path in this diagonal, | |
| // then this is a middle change of the index intervals. | |
| if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) { | |
| const bLast = bFirst - nCommonR; | |
| division.nChangePreceding = d; | |
| if (d === aLast + bLast - aStart - bStart) { | |
| // Optimization: number of changes in reverse direction | |
| // is equal to number of items in preceding interval, | |
| // therefore it cannot contain any common items. | |
| division.aEndPreceding = aStart; | |
| division.bEndPreceding = bStart; | |
| } else { | |
| division.aEndPreceding = aLast; | |
| division.bEndPreceding = bLast; | |
| } | |
| division.nCommonPreceding = nCommonR; | |
| if (nCommonR !== 0) { | |
| // The last point of reverse path segment is start of common subsequence. | |
| division.aCommonPreceding = aLast; | |
| division.bCommonPreceding = bLast; | |
| } | |
| division.nChangeFollowing = d - 1; | |
| if (d === 1) { | |
| // There is no previous path segment. | |
| division.nCommonFollowing = 0; | |
| division.aStartFollowing = aEnd; | |
| division.bStartFollowing = bEnd; | |
| } else { | |
| // Unlike the Myers algorithm which finds only the middle “snake” | |
| // this package can find two common subsequences per division. | |
| // Last point of previous path segment is on an adjacent diagonal. | |
| const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); | |
| // Because of invariant that intervals following the middle change | |
| // cannot have common items at the start, | |
| // move in forward direction along a diagonal of common items. | |
| const nCommonF = countCommonItemsF( | |
| aLastPrev, | |
| aEnd, | |
| bLastPrev, | |
| bEnd, | |
| isCommon | |
| ); | |
| division.nCommonFollowing = nCommonF; | |
| if (nCommonF !== 0) { | |
| // The last point of reverse path segment is start of common subsequence. | |
| division.aCommonFollowing = aLastPrev; | |
| division.bCommonFollowing = bLastPrev; | |
| } | |
| const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev | |
| const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev | |
| if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { | |
| // Optimization: number of changes in forward direction | |
| // is equal to number of items in following interval, | |
| // therefore it cannot contain any common items. | |
| division.aStartFollowing = aEnd; | |
| division.bStartFollowing = bEnd; | |
| } else { | |
| division.aStartFollowing = aStartFollowing; | |
| division.bStartFollowing = bStartFollowing; | |
| } | |
| } | |
| return true; | |
| } | |
| } | |
| } | |
| return false; | |
| }; | |
| // Given index intervals and input function to compare items at indexes, | |
| // divide at the middle change. | |
| // | |
| // DO NOT CALL if start === end, because interval cannot contain common items | |
| // and because this function will throw the “no overlap” error. | |
| const divide = ( | |
| nChange, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| aIndexesR, | |
| division // output | |
| ) => { | |
| const bF = bStart - aStart; // bIndex = bF + aIndex - kF | |
| const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR | |
| const aLength = aEnd - aStart; | |
| const bLength = bEnd - bStart; | |
| // Because graph has square or portrait orientation, | |
| // length difference is minimum number of items to insert from b. | |
| // Corresponding forward and reverse diagonals in graph | |
| // depend on length difference of the sequences: | |
| // kF = kR - baDeltaLength | |
| // kR = kF + baDeltaLength | |
| const baDeltaLength = bLength - aLength; | |
| // Optimization: max diagonal in graph intersects corner of shorter side. | |
| let iMaxF = aLength; | |
| let iMaxR = aLength; | |
| // Initialize no changes yet in forward or reverse direction: | |
| aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start | |
| aIndexesR[0] = aEnd; // at open end of interval | |
| if (baDeltaLength % 2 === 0) { | |
| // The number of changes in paths is 2 * d if length difference is even. | |
| const dMin = (nChange || baDeltaLength) / 2; | |
| const dMax = (aLength + bLength) / 2; | |
| for (let d = 1; d <= dMax; d += 1) { | |
| iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); | |
| if (d < dMin) { | |
| iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR); | |
| } else if ( | |
| // If a reverse path overlaps a forward path in the same diagonal, | |
| // return a division of the index intervals at the middle change. | |
| extendOverlappablePathsR( | |
| d, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| iMaxF, | |
| aIndexesR, | |
| iMaxR, | |
| division | |
| ) | |
| ) { | |
| return; | |
| } | |
| } | |
| } else { | |
| // The number of changes in paths is 2 * d - 1 if length difference is odd. | |
| const dMin = ((nChange || baDeltaLength) + 1) / 2; | |
| const dMax = (aLength + bLength + 1) / 2; | |
| // Unroll first half iteration so loop extends the relevant pairs of paths. | |
| // Because of invariant that intervals have no common items at start or end, | |
| // and limitation not to call divide with empty intervals, | |
| // therefore it cannot be called if a forward path with one change | |
| // would overlap a reverse path with no changes, even if dMin === 1. | |
| let d = 1; | |
| iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); | |
| for (d += 1; d <= dMax; d += 1) { | |
| iMaxR = extendPathsR( | |
| d - 1, | |
| aStart, | |
| bStart, | |
| bR, | |
| isCommon, | |
| aIndexesR, | |
| iMaxR | |
| ); | |
| if (d < dMin) { | |
| iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); | |
| } else if ( | |
| // If a forward path overlaps a reverse path in the same diagonal, | |
| // return a division of the index intervals at the middle change. | |
| extendOverlappablePathsF( | |
| d, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| iMaxF, | |
| aIndexesR, | |
| iMaxR, | |
| division | |
| ) | |
| ) { | |
| return; | |
| } | |
| } | |
| } | |
| /* istanbul ignore next */ | |
| throw new Error( | |
| `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}` | |
| ); | |
| }; | |
| // Given index intervals and input function to compare items at indexes, | |
| // return by output function the number of adjacent items and starting indexes | |
| // of each common subsequence. Divide and conquer with only linear space. | |
| // | |
| // The index intervals are half open [start, end) like array slice method. | |
| // DO NOT CALL if start === end, because interval cannot contain common items | |
| // and because divide function will throw the “no overlap” error. | |
| const findSubsequences = ( | |
| nChange, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| transposed, | |
| callbacks, | |
| aIndexesF, | |
| aIndexesR, | |
| division // temporary memory, not input nor output | |
| ) => { | |
| if (bEnd - bStart < aEnd - aStart) { | |
| // Transpose graph so it has portrait instead of landscape orientation. | |
| // Always compare shorter to longer sequence for consistency and optimization. | |
| transposed = !transposed; | |
| if (transposed && callbacks.length === 1) { | |
| // Lazily wrap callback functions to swap args if graph is transposed. | |
| const {foundSubsequence, isCommon} = callbacks[0]; | |
| callbacks[1] = { | |
| foundSubsequence: (nCommon, bCommon, aCommon) => { | |
| foundSubsequence(nCommon, aCommon, bCommon); | |
| }, | |
| isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex) | |
| }; | |
| } | |
| const tStart = aStart; | |
| const tEnd = aEnd; | |
| aStart = bStart; | |
| aEnd = bEnd; | |
| bStart = tStart; | |
| bEnd = tEnd; | |
| } | |
| const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; | |
| // Divide the index intervals at the middle change. | |
| divide( | |
| nChange, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| isCommon, | |
| aIndexesF, | |
| aIndexesR, | |
| division | |
| ); | |
| const { | |
| nChangePreceding, | |
| aEndPreceding, | |
| bEndPreceding, | |
| nCommonPreceding, | |
| aCommonPreceding, | |
| bCommonPreceding, | |
| nCommonFollowing, | |
| aCommonFollowing, | |
| bCommonFollowing, | |
| nChangeFollowing, | |
| aStartFollowing, | |
| bStartFollowing | |
| } = division; | |
| // Unless either index interval is empty, they might contain common items. | |
| if (aStart < aEndPreceding && bStart < bEndPreceding) { | |
| // Recursely find and return common subsequences preceding the division. | |
| findSubsequences( | |
| nChangePreceding, | |
| aStart, | |
| aEndPreceding, | |
| bStart, | |
| bEndPreceding, | |
| transposed, | |
| callbacks, | |
| aIndexesF, | |
| aIndexesR, | |
| division | |
| ); | |
| } | |
| // Return common subsequences that are adjacent to the middle change. | |
| if (nCommonPreceding !== 0) { | |
| foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding); | |
| } | |
| if (nCommonFollowing !== 0) { | |
| foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing); | |
| } | |
| // Unless either index interval is empty, they might contain common items. | |
| if (aStartFollowing < aEnd && bStartFollowing < bEnd) { | |
| // Recursely find and return common subsequences following the division. | |
| findSubsequences( | |
| nChangeFollowing, | |
| aStartFollowing, | |
| aEnd, | |
| bStartFollowing, | |
| bEnd, | |
| transposed, | |
| callbacks, | |
| aIndexesF, | |
| aIndexesR, | |
| division | |
| ); | |
| } | |
| }; | |
| const validateLength = (name, arg) => { | |
| if (typeof arg !== 'number') { | |
| throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`); | |
| } | |
| if (!Number.isSafeInteger(arg)) { | |
| throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`); | |
| } | |
| if (arg < 0) { | |
| throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`); | |
| } | |
| }; | |
| const validateCallback = (name, arg) => { | |
| const type = typeof arg; | |
| if (type !== 'function') { | |
| throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`); | |
| } | |
| }; | |
| // Compare items in two sequences to find a longest common subsequence. | |
| // Given lengths of sequences and input function to compare items at indexes, | |
| // return by output function the number of adjacent items and starting indexes | |
| // of each common subsequence. | |
| function diffSequence(aLength, bLength, isCommon, foundSubsequence) { | |
| validateLength('aLength', aLength); | |
| validateLength('bLength', bLength); | |
| validateCallback('isCommon', isCommon); | |
| validateCallback('foundSubsequence', foundSubsequence); | |
| // Count common items from the start in the forward direction. | |
| const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon); | |
| if (nCommonF !== 0) { | |
| foundSubsequence(nCommonF, 0, 0); | |
| } | |
| // Unless both sequences consist of common items only, | |
| // find common items in the half-trimmed index intervals. | |
| if (aLength !== nCommonF || bLength !== nCommonF) { | |
| // Invariant: intervals do not have common items at the start. | |
| // The start of an index interval is closed like array slice method. | |
| const aStart = nCommonF; | |
| const bStart = nCommonF; | |
| // Count common items from the end in the reverse direction. | |
| const nCommonR = countCommonItemsR( | |
| aStart, | |
| aLength - 1, | |
| bStart, | |
| bLength - 1, | |
| isCommon | |
| ); | |
| // Invariant: intervals do not have common items at the end. | |
| // The end of an index interval is open like array slice method. | |
| const aEnd = aLength - nCommonR; | |
| const bEnd = bLength - nCommonR; | |
| // Unless one sequence consists of common items only, | |
| // therefore the other trimmed index interval consists of changes only, | |
| // find common items in the trimmed index intervals. | |
| const nCommonFR = nCommonF + nCommonR; | |
| if (aLength !== nCommonFR && bLength !== nCommonFR) { | |
| const nChange = 0; // number of change items is not yet known | |
| const transposed = false; // call the original unwrapped functions | |
| const callbacks = [ | |
| { | |
| foundSubsequence, | |
| isCommon | |
| } | |
| ]; | |
| // Indexes in sequence a of last points in furthest reaching paths | |
| // from outside the start at top left in the forward direction: | |
| const aIndexesF = [NOT_YET_SET]; | |
| // from the end at bottom right in the reverse direction: | |
| const aIndexesR = [NOT_YET_SET]; | |
| // Initialize one object as output of all calls to divide function. | |
| const division = { | |
| aCommonFollowing: NOT_YET_SET, | |
| aCommonPreceding: NOT_YET_SET, | |
| aEndPreceding: NOT_YET_SET, | |
| aStartFollowing: NOT_YET_SET, | |
| bCommonFollowing: NOT_YET_SET, | |
| bCommonPreceding: NOT_YET_SET, | |
| bEndPreceding: NOT_YET_SET, | |
| bStartFollowing: NOT_YET_SET, | |
| nChangeFollowing: NOT_YET_SET, | |
| nChangePreceding: NOT_YET_SET, | |
| nCommonFollowing: NOT_YET_SET, | |
| nCommonPreceding: NOT_YET_SET | |
| }; | |
| // Find and return common subsequences in the trimmed index intervals. | |
| findSubsequences( | |
| nChange, | |
| aStart, | |
| aEnd, | |
| bStart, | |
| bEnd, | |
| transposed, | |
| callbacks, | |
| aIndexesF, | |
| aIndexesR, | |
| division | |
| ); | |
| } | |
| if (nCommonR !== 0) { | |
| foundSubsequence(nCommonR, aEnd, bEnd); | |
| } | |
| } | |
| } | |